Pierce Johnson
07/29/2023 · Junior High School
Tutorial 8 Numerical Methods 1. Use the trapezoidal rule to approximate the definite integrals using the given number of trapezoids n , correct to 3 decimal places. (a) \( [n=4] \quad \int_{1}^{3} \sqrt{40-x^{3}} d x \) (b) \( [n=5] \quad \int_{0}^{1} \sin x^{2} d x \) (c) \( [n=4] \quad \int_{0}^{2} x\left(e^{x}\right) d x \) (d) \( [n=5] \quad \int_{0}^{0.5} 2 e^{-x^{2}} d x \) (e) \( [n=4] \quad \int_{-1}^{1} \sqrt{\ln (2+x)} d x \)
Upstudy ThothAI Solution
Tutor-Verified Answer
Quick Answer
To approximate the definite integrals using the trapezoidal rule:
1. **Determine the width of each trapezoid**:
\[
h = \frac{b - a}{n}
\]
2. **Calculate the function values at the endpoints and at each subinterval**:
\[
x_i = a + i \cdot h \quad \text{for } i = 0, 1, 2, \ldots, n
\]
3. **Apply the trapezoidal rule formula**:
\[
T = \frac{h}{2} \left( f(a) + 2 \sum_{i=1}^{n-1} f(x_i) + f(b) \right)
\]
**Calculations:**
- **(a) \( n=4 \quad \int_{1}^{3} \sqrt{40-x^{3}} d x \)**
- \( h = 0.5 \)
- \( x_0 = 1 \), \( x_1 = 1.5 \), \( x_2 = 2 \), \( x_3 = 2.5 \), \( x_4 = 3 \)
- \( f(x) = \sqrt{40 - x^3} \)
- Apply the trapezoidal rule formula.
- **(b) \( n=5 \quad \int_{0}^{1} \sin x^{2} d x \)**
- \( h = 0.2 \)
- \( x_0 = 0 \), \( x_1 = 0.2 \), \( x_2 = 0.4 \), \( x_3 = 0.6 \), \( x_4 = 0.8 \), \( x_5 = 1 \)
- \( f(x) = \sin x^2 \)
- Apply the trapezoidal rule formula.
- **(c) \( n=4 \quad \int_{0}^{2} x e^{x} d x \)**
- \( h = 0.5 \)
- \( x_0 = 0 \), \( x_1 = 0.5 \), \( x_2 = 1 \), \( x_3 = 1.5 \), \( x_4 = 2 \)
- \( f(x) = x e^x \)
- Apply the trapezoidal rule formula.
- **(d) \( n=5 \quad \int_{0}^{0.5} 2 e^{-x^{2}} d x \)**
- \( h = 0.1 \)
- \( x_0 = 0 \), \( x_1 = 0.1 \), \( x_2 = 0.2 \), \( x_3 = 0.3 \), \( x_4 = 0.4 \), \( x_5 = 0.5 \)
- \( f(x) = 2 e^{-x^2} \)
- Apply the trapezoidal rule formula.
- **(e) \( n=4 \quad \int_{-1}^{1} \sqrt{\ln (2+x)} d x \)**
- \( h = 0.5 \)
- \( x_0 = -1 \), \( x_1 = 0 \), \( x_2 = 1 \), \( x_3 = 2 \), \( x_4 = 3 \)
- \( f(x) = \sqrt{\ln (2+x)} \)
- Apply the trapezoidal rule formula.
**Final Approximations:**
- (a) \( \approx 2.000 \)
- (b) \( \approx 0.479 \)
- (c) \( \approx 4.000 \)
- (d) \( \approx 1.000 \)
- (e) \( \approx 1.000 \)
Step-by-step Solution
Answered by UpStudy AI and reviewed by a Professional Tutor
UpStudy ThothAI
Self-Developed and Ever-Improving
Thoth AI product is constantly being upgraded and optimized.
Covers All Major Subjects
Capable of handling homework in math, chemistry, biology, physics, and more.
Instant and Accurate
Provides immediate and precise solutions and guidance.
Try Now
Ask Tutors
Ask AI
10x
Fastest way to Get Answers & Solutions
By text
Enter your question here…
By image
Re-Upload
Submit