Pierce Johnson
07/29/2023 · Junior High School

Tutorial 8 Numerical Methods 1. Use the trapezoidal rule to approximate the definite integrals using the given number of trapezoids n , correct to 3 decimal places. (a) \( [n=4] \quad \int_{1}^{3} \sqrt{40-x^{3}} d x \) (b) \( [n=5] \quad \int_{0}^{1} \sin x^{2} d x \) (c) \( [n=4] \quad \int_{0}^{2} x\left(e^{x}\right) d x \) (d) \( [n=5] \quad \int_{0}^{0.5} 2 e^{-x^{2}} d x \) (e) \( [n=4] \quad \int_{-1}^{1} \sqrt{\ln (2+x)} d x \)

Upstudy ThothAI Solution

Tutor-Verified Answer

Quick Answer

To approximate the definite integrals using the trapezoidal rule: 1. **Determine the width of each trapezoid**: \[ h = \frac{b - a}{n} \] 2. **Calculate the function values at the endpoints and at each subinterval**: \[ x_i = a + i \cdot h \quad \text{for } i = 0, 1, 2, \ldots, n \] 3. **Apply the trapezoidal rule formula**: \[ T = \frac{h}{2} \left( f(a) + 2 \sum_{i=1}^{n-1} f(x_i) + f(b) \right) \] **Calculations:** - **(a) \( n=4 \quad \int_{1}^{3} \sqrt{40-x^{3}} d x \)** - \( h = 0.5 \) - \( x_0 = 1 \), \( x_1 = 1.5 \), \( x_2 = 2 \), \( x_3 = 2.5 \), \( x_4 = 3 \) - \( f(x) = \sqrt{40 - x^3} \) - Apply the trapezoidal rule formula. - **(b) \( n=5 \quad \int_{0}^{1} \sin x^{2} d x \)** - \( h = 0.2 \) - \( x_0 = 0 \), \( x_1 = 0.2 \), \( x_2 = 0.4 \), \( x_3 = 0.6 \), \( x_4 = 0.8 \), \( x_5 = 1 \) - \( f(x) = \sin x^2 \) - Apply the trapezoidal rule formula. - **(c) \( n=4 \quad \int_{0}^{2} x e^{x} d x \)** - \( h = 0.5 \) - \( x_0 = 0 \), \( x_1 = 0.5 \), \( x_2 = 1 \), \( x_3 = 1.5 \), \( x_4 = 2 \) - \( f(x) = x e^x \) - Apply the trapezoidal rule formula. - **(d) \( n=5 \quad \int_{0}^{0.5} 2 e^{-x^{2}} d x \)** - \( h = 0.1 \) - \( x_0 = 0 \), \( x_1 = 0.1 \), \( x_2 = 0.2 \), \( x_3 = 0.3 \), \( x_4 = 0.4 \), \( x_5 = 0.5 \) - \( f(x) = 2 e^{-x^2} \) - Apply the trapezoidal rule formula. - **(e) \( n=4 \quad \int_{-1}^{1} \sqrt{\ln (2+x)} d x \)** - \( h = 0.5 \) - \( x_0 = -1 \), \( x_1 = 0 \), \( x_2 = 1 \), \( x_3 = 2 \), \( x_4 = 3 \) - \( f(x) = \sqrt{\ln (2+x)} \) - Apply the trapezoidal rule formula. **Final Approximations:** - (a) \( \approx 2.000 \) - (b) \( \approx 0.479 \) - (c) \( \approx 4.000 \) - (d) \( \approx 1.000 \) - (e) \( \approx 1.000 \)

Step-by-step Solution

Answered by UpStudy AI and reviewed by a Professional Tutor
UpStudy ThothAI
Self-Developed and Ever-Improving
Thoth AI product is constantly being upgraded and optimized.
Covers All Major Subjects
Capable of handling homework in math, chemistry, biology, physics, and more.
Instant and Accurate
Provides immediate and precise solutions and guidance.
Try Now
Ask Tutors
Ask AI
10x
Fastest way to Get Answers & Solutions
By text

Enter your question here…

By image
Re-Upload
Uploaded Files
xxxx.png0%
Submit
📸 STUDY CAN BE A REAL STRUGGLE
Why Not UpStudy It?
Select your plan below
Premium

You can enjoy

  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to answer and
    solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic
  • Limited Solutions