Fitzgerald Gibson
10/02/2023 · Junior High School

\begin{tabular}{l} Considérons la fonction numérique \( f \) de la variable \\ réelle \( x \) définie sur \( \mathbb{R} \) par : \( f(x)=\frac{1}{2} \sqrt{x^{2}+3} \) \\ 1. a) Montrer que : \( f^{\prime}(x)=\frac{x}{2 \sqrt{x^{2}+3}} \) pour tout \\ \( x \geq 0 \), puis dresser le tableau de variations de la \\ fonction \( f \) sur \( \mathbb{R} \). \\ a) Montrer que : \( f([0 ; 1[\subset[0 ; 1[ \). \\ \hline 2. a) Résoudre dans \( \mathbb{R} \) l'équation \( (E): f(x)=x \). \\ b) Montrer que : \( f(x)>x \) pour tout élément \\ \( x \) de l'intervalle \( [0 ; 1[ \). \end{tabular}

Upstudy ThothAI Solution

Tutor-Verified Answer

Quick Answer

Pour la fonction \( f(x) = \frac{1}{2} \sqrt{x^{2} + 3} \): 1. **Dérivée** : \( f'(x) = \frac{x}{2 \sqrt{x^{2} + 3}} \) pour \( x \geq 0 \). 2. **Tableau de variations** : - Croissante sur \( [0, +\infty) \). - Valeur minimale à \( x = 0 \) : \( \frac{1}{2} \sqrt{3} \). - Limite à \( +\infty \) : \( +\infty \). 3. **Image de l'intervalle** : \( f([0 ; 1[) \subset [0 ; 1[ \). 4. **Résolution de l'équation \( f(x) = x \)** : \( x = 1 \). 5. **Inégalité** : \( f(x) > x \) pour tout \( x \in [0 ; 1[ \).

Step-by-step Solution

Answered by UpStudy AI and reviewed by a Professional Tutor
UpStudy ThothAI
Self-Developed and Ever-Improving
Thoth AI product is constantly being upgraded and optimized.
Covers All Major Subjects
Capable of handling homework in math, chemistry, biology, physics, and more.
Instant and Accurate
Provides immediate and precise solutions and guidance.
Try Now
Ask Tutors
Ask AI
10x
Fastest way to Get Answers & Solutions
By text

Enter your question here…

By image
Re-Upload
Uploaded Files
xxxx.png0%
Submit
📸 STUDY CAN BE A REAL STRUGGLE
Why Not UpStudy It?
Select your plan below
Premium

You can enjoy

  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to answer and
    solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic
  • Limited Solutions