Fitzgerald Wang
05/28/2024 · Senior High School
b) Montrer que : \( \lim _{x \rightarrow+\infty} f(x)=+\infty \) puis calculer \( \lim _{x \rightarrow+\infty} \frac{f(x)}{x} \)
Upstudy ThothAI Solution
Tutor-Verified Answer
Quick Answer
Pour démontrer que \( \lim_{x \to +\infty} f(x) = +\infty \), identifiez le terme dominant de \( f(x) \) qui croît le plus rapidement. Ensuite, pour calculer \( \lim_{x \to +\infty} \frac{f(x)}{x} \), divisez chaque terme de \( f(x) \) par \( x \) et simplifiez l'expression. Si le terme dominant de \( f(x) \) est plus grand que \( x \), alors \( \lim_{x \to +\infty} \frac{f(x)}{x} = +\infty \).
Step-by-step Solution
Answered by UpStudy AI and reviewed by a Professional Tutor
UpStudy ThothAI
Self-Developed and Ever-Improving
Thoth AI product is constantly being upgraded and optimized.
Covers All Major Subjects
Capable of handling homework in math, chemistry, biology, physics, and more.
Instant and Accurate
Provides immediate and precise solutions and guidance.
Try Now
Ask Tutors
Ask AI
10x
Fastest way to Get Answers & Solutions
By text
Enter your question here…
By image
Re-Upload
Submit