\( \begin{array}{l}2.1 \text { If } \hat{\mathrm{A}}=310^{\circ} \text { and } \hat{\mathrm{B}}=130,5^{\circ} \text {, determine the following values, correct to ONE } \\ \text { decimal digit: } \\ 2.1 .1 \quad \tan 3 B+\frac{1}{3} \cos \frac{A}{3} \\ 2.1 .2 \quad-\sec \left(\frac{A}{4}-2 B\right) \\ 2.2 \text { If } \cot \theta=-\frac{12}{5} \text { and } \sin \theta>0 \text {, determine the value of } 20 \operatorname{cosec} \theta-12 \sec \theta \text {, } \\ \text { WITHOUT the use of a calculator. } \\ 2.3 \text { Simplify the following expression: } \\ 2.4 \text { Prove that: } \frac{1}{\tan \left(360^{\circ}-x\right) \sec \left(180^{\circ}+x\right) \operatorname{cosec}\left(360^{\circ}+x\right)} \\ 1+\cot ^{2} x\end{array} \frac{1}{1+\tan ^{2} x}=1 \)
Upstudy ThothAI Solution
Quick Answer
Step-by-step Solution
Enter your question here…