girl-logo

Ask Questions

Algebra Questions & Answers

Q:
1.2 Given: \( f(x)=k x^{2}-(k+2) x+k+2+\frac{1}{k}=0 \) where \( k \neq 0 \), determine: 1.2.1 the value(s) of \( k \) for which the function has non -Real roots. 1.2.2 for which value(s) of \( k \) will \( g(x)=\frac{1}{k} \) be a tangent to \( f \).
Q:
Let \( m=7 \) 7. \( \left(m^{2}-9\right) \div 2 \)
Q:
Use propenties of logarithms to condense the logarithmic expression. Write the expression as a single logarithm whose coefficient is 1 . Where possible, evaluate logarithmic expressions. \( \frac{1}{2} \log _{5} x+\log _{5} y \)
Q:
\( 2 ( \log _ { a } c + \log _ { b } c ) = 9 \log _ { a b } c \)
Q:
Condensing Logarithmic Expressions. Rewrite each of the following logarithmic expressions using a single logarithm. \( \begin{array}{ll}\text { 1. } \frac{1}{3} \log _{2} 6+\frac{1}{3} \log _{2} x+\frac{2}{3} \log _{2} y & \text { 3.) } 2 \ln (x+3)+\ln x-\ln (2 x-1)\end{array} \)
Q:
\( \left. \begin{array} { l } { \left. \begin{array} { l } { \frac { 2 x } { 2 } \leq - \frac { 8 } { 2 } } \\ { x \leq - 4 } \end{array} \right. \quad ( - \infty , - 4 ] \cup [ 6 , \infty ) } \\ { + 1 / 2 } \end{array} \right. \)
Q:
Simplify the following expressions: 1.2.1 \( \frac{5}{a}-\frac{5}{a^{2}-a} \) \( 1.2 .2 \frac{x-1}{\sqrt{x}+1} \)
Q:
Use propertius of logarithms to expand the logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. \[ \log _{3}\left(\frac{\sqrt{x}}{9}\right) \]
Q:
\( \frac { x } { 1,2 } = \frac { 5 } { 1 } \Rightarrow x = \)
Q:
Use properties of logarithms to expand the logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. \[ \log _{b}\left(y z^{4}\right) \]

Test your knowledge on Algebra!

Select the correct answer and check your answer

15 16 17 18 19 20 21 22 23 24
Ask Tutors
Ask AI
10x
Fastest way to Get Answers & Solutions
By text

Enter your question here…

By image
Re-Upload
Uploaded Files
xxxx.png0%
Submit
📸 STUDY CAN BE A REAL STRUGGLE
Why Not UpStudy It?
Select your plan below
Premium

You can enjoy

  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to answer and
    solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic
  • Limited Solutions