Q:
26. \( \int \frac{\sec ^{2} x d x}{2+4 \operatorname{tg} x}=\frac{1}{4} \ln (2+4 \operatorname{tg} x)+C \)
27. \( \int\left(\frac{\csc x}{1+\operatorname{ctg} x}\right)^{2}=\frac{1}{1+\operatorname{ctg} x}+C \)
Q:
Page \( \langle 5\rangle \) 。
5. (a) Take a \( \ln ( \) natural log) of both sides like we did in our class and (b) find
\( \frac{d y}{d x} \) of part (a) and write your final answer in simplest form.
\( y=(x+4)^{\left(5 x^{2}+1\right)} \). NOT allowed to use Chegg or other such websites. NO Desmos, Calculato
and/or any other graphing website and/or utilities.
Q:
(c) Halle la ecuación de la recta tangente en \( x= \)
5
a. \( y=36 x+84 \)
b. \( y=-36 x-84 \)
c. \( y=36 x-84 \)
d. \( y=84-36 x \)
e. Ninguna.
Q:
26. \( \int \frac{\sec ^{2} x d x}{2+4 \operatorname{tg} x}=\frac{1}{4} \ln (2+4 \operatorname{tg} x)+C \)
27. \( \int\left(\frac{\csc x}{1+\operatorname{ctg} x}\right)^{2}=\frac{1}{1+\operatorname{ctg} x}+C \)
Q:
\( f^{2}(x)=\int_{0}^{x} 4 t \cdot 3^{t^{2}} \cdot f(t) \mathrm{d} t \) y \( f(0)=\frac{1}{\ln 3} \)
Q:
Si \( \lim _{x \rightarrow c^{-}} f(x)=M \quad y \quad \lim _{x \rightarrow c^{+}} f(x)=N \)
Donde \( M \neq N \)
Entonces, \( \lim _{x \rightarrow c} f(x)= \)
O
O
OyN
Oo existe
Q:
3. \( \int \operatorname{ctg}^{3} d x= \)
Q:
2.t \( \int \sec ^{4} d x= \)
Q:
1. \( \int \tan ^{3} x d x= \)
Q:
\begin{tabular}{|l|l|}\hline \multicolumn{2}{|c|}{ Dada la Integral } \\ 1. \( \int \cos ^{2} x d x= \) \\ \hline 2. \( \int \operatorname{sen}^{4} d x= \) & \\ \hline 3. \( \int \cos ^{3} d x= \) & \\ \hline 4. \( \int \operatorname{sen}^{5} d x= \) & \\ \hline 5. \( \int \cos ^{7} d x= \) & \\ \hline\end{tabular}
Ask Tutors
Ask AI
10x
Fastest way to Get Answers & Solutions
By text
Enter your question here…
By image
Re-Upload
Submit