girl-logo

Ask Questions

Calculus Questions & Answers

Q:
26. \( \int \frac{\sec ^{2} x d x}{2+4 \operatorname{tg} x}=\frac{1}{4} \ln (2+4 \operatorname{tg} x)+C \) 27. \( \int\left(\frac{\csc x}{1+\operatorname{ctg} x}\right)^{2}=\frac{1}{1+\operatorname{ctg} x}+C \)
Q:
Page \( \langle 5\rangle \) 。 5. (a) Take a \( \ln ( \) natural log) of both sides like we did in our class and (b) find \( \frac{d y}{d x} \) of part (a) and write your final answer in simplest form. \( y=(x+4)^{\left(5 x^{2}+1\right)} \). NOT allowed to use Chegg or other such websites. NO Desmos, Calculato and/or any other graphing website and/or utilities.
Q:
(c) Halle la ecuación de la recta tangente en \( x= \) 5 a. \( y=36 x+84 \) b. \( y=-36 x-84 \) c. \( y=36 x-84 \) d. \( y=84-36 x \) e. Ninguna.
Q:
26. \( \int \frac{\sec ^{2} x d x}{2+4 \operatorname{tg} x}=\frac{1}{4} \ln (2+4 \operatorname{tg} x)+C \) 27. \( \int\left(\frac{\csc x}{1+\operatorname{ctg} x}\right)^{2}=\frac{1}{1+\operatorname{ctg} x}+C \)
Q:
\( f^{2}(x)=\int_{0}^{x} 4 t \cdot 3^{t^{2}} \cdot f(t) \mathrm{d} t \) y \( f(0)=\frac{1}{\ln 3} \)
Q:
Si \( \lim _{x \rightarrow c^{-}} f(x)=M \quad y \quad \lim _{x \rightarrow c^{+}} f(x)=N \) Donde \( M \neq N \) Entonces, \( \lim _{x \rightarrow c} f(x)= \) O O OyN Oo existe
Q:
3. \( \int \operatorname{ctg}^{3} d x= \)
Q:
2.t \( \int \sec ^{4} d x= \)
Q:
1. \( \int \tan ^{3} x d x= \)
Q:
\begin{tabular}{|l|l|}\hline \multicolumn{2}{|c|}{ Dada la Integral } \\ 1. \( \int \cos ^{2} x d x= \) \\ \hline 2. \( \int \operatorname{sen}^{4} d x= \) & \\ \hline 3. \( \int \cos ^{3} d x= \) & \\ \hline 4. \( \int \operatorname{sen}^{5} d x= \) & \\ \hline 5. \( \int \cos ^{7} d x= \) & \\ \hline\end{tabular}

Test your knowledge on Calculus!

Select the correct answer and check your answer

28 29 30 31 32 33 34 35 36 37
Ask Tutors
Ask AI
10x
Fastest way to Get Answers & Solutions
By text

Enter your question here…

By image
Re-Upload
Uploaded Files
xxxx.png0%
Submit
📸 STUDY CAN BE A REAL STRUGGLE
Why Not UpStudy It?
Select your plan below
Premium

You can enjoy

  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to answer and
    solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic
  • Limited Solutions