Q:
1. Transform the following equations to canonical forms
a) \( x^{2}+4 x y+4 y^{2}-20 x+10 y-50=0 \)
b) \( 3 x^{2}+10 x y+3 y^{2}-12 x-12 y+4=0 \)
c) \( x^{2}+2 x y+y^{2}-4 x-4 y+3=0 \)
d) \( 9 x^{2}+24 x y+16 y^{2}-126 x+82 y-59=0 \)
e) \( 3 x^{2}-8 x y-3 y^{2}+10 x-13 y+8=0 \)
f) \( 3 x^{2}-5 x y+6 y^{2}+11 x-17 y+13=0 \)
g) \( 9 x^{2}+24 x y+16 y^{2}+34 x+62 y+47=0 \)
h) \( x^{2}-4 x y+4 y^{2}-12 x-6 y-39=0 \)
Q:
What is the slope of the line that passes through the points \( (3 \),
\( -2) \) and \( (9,-5) \) ?
Q:
Drag the points to form a line with a slope of 4 and a negative \( y \)
intercept.
Q:
What is the slope of the line that passes through the points ( 4 ,
\( -4) \) and \( (1,-4) \) ?
Q:
Drag the points to form a line with a slope of 0 and a \( y \)
intercept of -2 .
Q:
a. \( \frac{y^{2}}{16}+\frac{(x+3)^{2}}{4}=1 \)
Q:
Si \( \mathrm{BA}=3 \mathrm{~m}, \mathrm{MC}=2 \mathrm{~m} \) y
\( \overline{A B} \| \overline{Q M} \), encontrar la
longitud de QM.
Q:
a. \( \frac{y^{2}}{16}+\frac{(x+3)^{2}}{4}=1 \)
Q:
Halle el volumen de una eiramide octagonal regular que tiene de
lacta 8mm y de de lado en la base 70 m , de apotema is dm
y la altura de la eiramide es de 30 dm
Q:
En la figura se muestra un
terreno dividido en tres
parcelas, P1, P2 y P3. Las
regiones triangulares
sombreadas ( 22 y P3) son
congruentes.
Si \( \mathrm{BA}=3 \mathrm{~m}, \mathrm{MC}=2 \mathrm{my} \)
Ask Tutors
Ask AI
10x
Fastest way to Get Answers & Solutions
By text
Enter your question here…
By image
Re-Upload
Submit