Q:
Pregunta:
Si \( x=\pi-\sqrt{2} \) y \( y=\pi+\sqrt{2} \), ¿Qué tipo de número se obtendría al resolver \( x-y \) ?
Opciones de respuesta:
A) Es un número entero.
B) Es un número racional.
C) Es un número irracional.
Q:
Finding a final amount in a word problem on exponentinl growth or decay
The half-life of a radioactive isotope is the time it takes for a quantity of the isotope to be reduced to half its initial mass. Starting with 135 grams of a
radioactive isotope, how much will be left after 3 half-lives?
Use the calculator provided and round your answer to the nearest gram.
Q:
The radioactive substance uranium- 240 has a half-life of 14 hours. The amount \( A(t) \) of a sample of uranium- 240 remaining (in grams) after \( t \) hours is given by
the following exponential function.
\[ A(t)=5600\left(\frac{1}{2}\right)^{\frac{t}{14}} \]
Find the amount of the sample remaining after 11 hours and after 40 hours.
Round your answers to the nearest gram as necessary.
Q:
Question 14 (1 point)
Given the function \( f(x)=\sqrt{x-h}+k \) with a domain of \( \{x \mid x \geq-5, x \in R\} \) and a range of \( \{y \mid y \geq 8, y \in R\} \),
which of the following best describes the vertical and horizontal translations with respect to the graph of
\( f(x)=\sqrt{x} \) ?
5 units to left and 8 units up
8 units to left and 5 units down to left and 5 units up
5 units to left and 8 units down
Question 15 (1 point)
Q:
Question 9 (1 point)
Compared to the graph of \( f(x)=\sqrt{x+2} \), the graph \( g(x)=\sqrt{2-x} \) is a
A) reflection in the \( x \) - and \( y \)-axes
B) reflection in the \( x \)-axis
Q:
Question 8 (1 point)
Which choice best describes the combination of transformations that mus
applied to the graph of \( f(x)=\sqrt{x} \) to obtain the graph of \( g(x)=2 \sqrt{x-4} \) ?
Q:
Question 7 (1 point)
Compared to the graph of the function \( f(x)=\frac{1}{x} \), the graph of the function \( g(x)=\frac{1}{x-1} \) is
translated
A) 1 unit up
B) 1 unit to the right
C) 1 unit down
D) 1 unit to the left
Q:
(1) EJercitación. Trazar la gráfica de cada funcion. Determinar su dominio y su rango
es creciente, decreciente y constante.
\( \begin{array}{ll}\text { 1. } f(x)=\left\{\begin{array}{ll}x+1 & \text { si } x>0 \\ -2 x-3 & \text { si } x \leq 0\end{array}\right. \\ \text { 4. } f(x)=\left\{\begin{array}{ll}x+2 & \text { si } x<-1 \\ x+4 & \text { si } x>-1 \\ x^{2} & \text { si } x>1 \\ x^{3} & \text { si } x \leq 1\end{array}\right. \\ \begin{array}{ll}x+2 & \text { si } x=-1\end{array} & \text { 5. } f(x)=\left\{\begin{array}{ll}(x-1)^{2} & \text { si } x>2 \\ x+2 & \text { si } x \leq 2\end{array}\right.\end{array} \)
Q:
(4 of 10)
The graph \( f(x) \) is transformed by the following sequence.
1. Shift right 5 units
2. Reflect over \( y \)-axis
3. Shift down 8 units
\( \begin{array}{l}y=-f(x-5)-8 \\ y=-f(x+5)-8 \\ y=f(-x+5)-8 \\ \text { Which is an equation for the new graph? } \\ \begin{array}{l}y \\ y\end{array}\end{array} \)
Q:
HALLAR EL DOMINIO DE \( F(x)=\sqrt{L N(x-S)} \)
Ask Tutors
Ask AI
10x
Fastest way to Get Answers & Solutions
By text
Enter your question here…
By image
Re-Upload
Submit