Q:
A 26 -foot long ladder is leaning against a building What is the approximate height of the building?
at a \( 60^{\circ} \) angle with the ground.
Which of the following equations can you use to
find the height of the building, \( h \) ?
Q:
A 26 -foot long ladder is leaning against a building
at a \( 60^{\circ} \) angle with the ground.
Which of the following equations can you use to
find the height of the building, \( h \) ?
\( \csc \left(60^{\circ}\right)=\frac{26}{h} \)
\( \csc \left(60^{\circ}\right)=\frac{h}{26} \)
\( \sec \left(60^{\circ}\right)=\frac{26}{h} \)
\( \sec \left(60^{\circ}\right)=\frac{h}{26} \)
Q:
Select all that are undefined.
\( \square \quad \csc (\pi) \)
\( \cot \left(\frac{\pi}{2}\right) \)
\( \square \cot (\pi) \)
\( \square \sec \left(45^{\circ}\right) \)
\( \square \csc \left(0^{\circ}\right) \)
\( \square \sec \left(90^{\circ}\right) \)
Q:
Find the exact value of \( \sec \left(-135^{\circ}\right) \).
\( \begin{array}{ll}-2 \\ -\sqrt{2} \\ & \sqrt{2} \\ 2\end{array} \)
Q:
Evaluate: \( \cot \left(\frac{\pi}{3}\right) \)
\( \begin{array}{ll}\frac{2 \sqrt{3}}{3} \\ 0 & \sqrt{2} \\ 0 & 2 \\ \frac{\sqrt{3}}{3}\end{array} \)
Q:
Select all that have negative values.
\( \square \quad \cot (\pi) \)
\( \square \csc \left(\frac{5 \pi}{4}\right) \)
\( \square \sec \left(-65^{\circ}\right) \)
\( \square \csc \left(340^{\circ}\right) \)
\( \square \sec \left(120^{\circ}\right) \)
Q:
Simplify: \( \frac{\cos (\theta) \csc (\theta)}{\sin (\theta) \cot (\theta)} \)
\( \tan (\theta) \)
\( \cos (\theta) \)
\( \csc (\theta) \)
\( \sec (\theta) \)
Q:
Simplify: \( \sec (\theta) \sin (\theta) \cot (\theta) \)
1
\( \sec (\theta) \)
\( \cos (\theta) \)
\( \cot (\theta) \)
Q:
Explain how to find the exact value of \( \sin \left(570^{\circ}\right) \).
Q:
For which angle \( \theta \) is \( \cos \theta=-1 \) ?
\( \begin{array}{l}\text { ? } 270^{\circ} \\ \text { - } 360^{\circ} \\ 0 \\ 450^{\circ} \\ 0\end{array} 440^{\circ} \)
Ask Tutors
Ask AI
10x
Fastest way to Get Answers & Solutions
By text
Enter your question here…
By image
Re-Upload
Submit