Calculus Questions from Dec 17,2024

Browse the Calculus Q&A Archive for Dec 17,2024, featuring a collection of homework questions and answers from this day. Find detailed solutions to enhance your understanding.

error msg
27-34 다음의 이중적분을 계산하여라. 27. \( \iint_{R} x \sec ^{2} y d A, \quad R=\{(x, y) \mid 0 \leqslant x \leqslant 2,0 \leqslant y \leqslant \pi / 4\} \) 28. \( \iint_{R}\left(y+x y^{-2}\right) d A, \quad R=\{(x, y) \mid 0 \leqslant x \leqslant 2,1 \leqslant y \leqslant 2\} \) 29. \( \iint_{R} \frac{x y^{2}}{x^{2}+1} d A, \quad R=\{(x, y) \mid 0 \leqslant x \leqslant 1,-3 \leqslant y \leqslant 3\} \) 30. \( \iint_{R} \frac{\tan \theta}{\sqrt{1-t^{2}}} d A, \quad R=\left\{(\theta, t) \mid 0 \leqslant \theta \leqslant \pi / 3,0 \leqslant t \leqslant \frac{1}{2}\right\} \) \( \int _ { 0 } ^ { 1 } \int _ { 0 } ^ { \sqrt { 1 - y ^ { 2 } } } \sin ( x ^ { 2 } + y ^ { 2 } ) d x \partial y \) 15-26 다음의 반복적분을 계산 15. \( \int_{1}^{4} \int_{0}^{2}\left(6 x^{2} y-2 x\right) d y d x \) 9-11 입체의 부피로 간주하여 이중적분을 계산하여라. 9. \( \iint_{R} \sqrt{2} d A, \quad R=\{(x, y) \mid 2 \leqslant x \leqslant 6,-1 \leqslant y \leqslant 5\} \) 10. \( \iint_{R}(2 x+1) d A, \quad R=\{(x, y) \mid 0 \leqslant x \leqslant 2,0 \leqslant y \leqslant 4\} \) 11. \( \iint_{R}(4-2 y) d A, \quad R=[0,1] \times[0,1] \) \( \int \frac { \sqrt { w } } { \sqrt { 1 - \sqrt { w } } } d w \) CAS 를 사용하여 라그랑주 승수의 방법을 사용할 때 생기는 방정식 을 풀어라. 60. \( f(x, y, z)=x+y+z ; \quad x^{2}-y^{2}=z, x^{2}+z^{2}=4 \) CAS 를 사용하여 라그랑주 승수의 방법을 사용할 때 생기는 방정식 을 풀어라. 60. \( f(x, y, z)=x+y+z ; \quad x^{2}-y^{2}=z, x^{2}+z^{2}=4 \) \( \int _ { 0 } ^ { \frac { \pi } { 3 } } ( - 1 ) ^ { \frac { 1 } { 2 } x } d x \) 1. \( 4 x^{2} y^{\prime \prime}+17 y=0, y(1)=-1, y^{\prime}(1)=-\frac{1}{2} \) 2. \( y^{\prime}-y^{2}=x^{2} \), dimana \( y(1)=1 \) 3. \( \frac{a^{2} y}{d t^{2}}+y=4 t e^{t}, y(0)=-2, y^{\prime}(0)=0 \) 4. \( y^{\prime \prime}+y=\left\{\begin{array}{c}1, t \leq 0 \\ t, 0<t<2 \text {, dimana } y(0)=-2, y^{\prime}(0) \\ e^{2 t}, t \geq 2\end{array}\right. \) 55. 곡믈 저장고는 원기둥 위에 반구형 지봉과 평평한 바닥을 붙여 지어진다. 전체 검님이 \( S \) 에 대해 원기둥의 반지름과 높이가 같 을 재 지장고의 부피가 최댓값을 가짐을 라그랑주 승수를 이용 하여 보여라.
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy