Pre-calculus Questions from Jan 22,2025

Browse the Pre-calculus Q&A Archive for Jan 22,2025, featuring a collection of homework questions and answers from this day. Find detailed solutions to enhance your understanding.

error msg
The equation \( y=\log (x+1) \) has a vertical asymptote at: \( x=\square \) For the function \( f(x)=6^{x} \) calculate the following function values: \( f(4)= \) \( f(5)= \) On considère la fonction \( f \) définie de \( \mathbb{R} \) vers \( \mathbb{R} \) par: \( f(x)=\frac{|x|-2}{x+2} \) Détermine les restrictions de \( f \) à \( \mathbb{R}^{+} \)et à \( \mathbb{R}^{-} \backslash\{-2\} \) Answer the following True or False: For every \( x>0, e^{\ln (6 x)}-\ln \left(e^{6 x}\right)=0 \) True False Given the geometric series: \( 8 x^{2}+4 x^{3}+2 x^{4}+\ldots \) 3.1 Determine the \( \mathrm{n}^{\text {th }} \) term of the series. 3.2 For what value(s) of \( x \) will the series converge? 3.3 Calculate the sum of the series to infinity if \( x=\frac{3}{2} \). Nubraižyk funkcijos grafika: \( \begin{array}{llll}\text { a) } f(x)=2 x-3 ; & \text { b) } f(x)=x^{2}+2 x-8 ; & \text { c) } f(x)=(x-2)^{2}-4 ; & \text { d) } f(x)=\frac{6}{x} ; \\ \text { e) } g(x)=3 x ; & \text { f) } g(x)=(x-1)(x+1) ; & \text { g) } g(x)=\frac{1}{2} x^{2}+1 ; & \text { h) } g(x)=-\frac{1}{2} x^{2}+2\end{array} \) QUESTION 7 Suppose the functions \( f, g, h \) and \( l \) are defined as follows: \[ \begin{array}{l} f(x)=4 x^{2}-5 x+1 \\ g(x)=2 \sqrt{2-\frac{x}{2}}-x \\ h(x)=-\frac{1}{2} x+3 \\ l(x)=\log _{4}(x+3)-\log _{4}(x-2) \end{array} \] (a) Write down \( D_{f} \) and solve the inequality \( f(x) \leq 0 \). (b) Solve the equation \( g(x)=-4 \). (c) Solve the equation \( 4^{h(x)}=8 \). (d) Write down \( D_{l} \) and solve \( l(x)=\frac{1}{2} \). The height of the baseball thrown upward into the air \( t \) seconds after it is released is approximated by the function \[ h=-16 t^{2}+96 t+6 \] a. Find the maximum height of the baseball. \( \frac{a+i b}{a-i b} \) का कोणांक ज्ञात कीजिए। \( f(x)=\log _{2}(x+3) \) and \( g(x)=\log _{2}(3 x+1) \). (a) Solve \( f(x)=4 \). What point is on the graph of \( f \) ? (b) Solve \( g(x)=4 \). What point is on the graph of \( g \) ? (c) Solve \( f(x)=g(x) \). Do the graphs of \( f \) and \( g \) intersect? If so, where? (d) Solve \( (f+g)(x)=7 \). (e) Solve \( (f-g)(x)=6 \).
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy