Gibson Best
02/06/2023 · Escuela primaria
A container in the shape of an inverted cone of radius 3 metres and vertical height 4.5 metres is initially filled with liquid fertiliser. This fertiliser is released through a hole in the bottom of the container at a rate of \( 0.01 \mathrm{~m}^{3} \) per second. At time \( t \) seconds the fertiliser remaining in the container forms an inverted cone of height \( h \) metres. [The volume of a cone is \( V=\frac{1}{3} \pi r^{2} h \).] (i) Show that \( h^{2} \frac{\mathrm{~d} h}{\mathrm{~d} t}=-\frac{9}{400 \pi} \). (ii) Express \( h \) in terms of \( t \). (iii) Find the time it takes to empty the container, giving your answer to the nearest minute.
Solución ThothAI de Upstudy
Respuesta verificada por el tutor
Respuesta rápida
It takes approximately 71 minutes to empty the container.
Solución paso a paso
Respondido por UpStudy AI y revisado por un tutor profesional
Estudio de ThothAI
Autodesarrollado y en constante mejora
El producto Thoth AI se actualiza y optimiza constantemente.
Cubre todos los temas principales
Capaz de manejar tareas de matemáticas, química, biología, física y más.
Instantáneo y preciso
Proporciona soluciones y orientación inmediatas y precisas.
Probar ahora
Tutores
AI
10x
La forma más rápida deObtenga respuestas y soluciones
Por texto
Introduce tu pregunta aquí…
Por imagen
Volver a cargar
Enviar