Blake Logan
04/30/2024 · Elementary School

Esercizio 13.16 Costruire, se possibile, un'applicazione lineare \( F: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{4} \) abbia come nucleo il sottospazio \( U=\mathcal{L}((1,1,0),(-1,1,1)) \). È unica tale applicazionet Svolgimento Deve essere \[ F(1,1,0)=F(-1,1,1)=(0,0,0,0) \] Poiché manca un vettore, per completare ad una base dello spazio di partenza, le applicazioni lineari possibili sono infinite. Si badi a non far sì che anche il terros vettore della base di partenza vada a finire nel vettore nullo, altrimenti si ottiene l'applicazione nulla che ha nucleo di dimensione tre. Lavorando un po' con l'occhio allenato si trova ad esempio \[ F(x, y, z)=(x-y+2 z, 0,0,0) \]

Solución ThothAI de Upstudy

Respuesta verificada por el tutor

Respuesta rápida

Per costruire un'applicazione lineare \( F: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{4} \) con nucleo \( U = \mathcal{L}((1,1,0),(-1,1,1)) \), si può definire \( F \) come: \[ F(x, y, z) = (x - y + 2z, 0, 0, 0) \] Questa applicazione mappa i vettori nel nucleo al vettore nullo e ha un'immagine di dimensione 1 in \( \mathbb{R}^{4} \). Ci sono infinite applicazioni lineari che soddisfano queste condizioni.

Solución paso a paso

Respondido por UpStudy AI y revisado por un tutor profesional
Estudio de ThothAI
Autodesarrollado y en constante mejora
El producto Thoth AI se actualiza y optimiza constantemente.
Cubre todos los temas principales
Capaz de manejar tareas de matemáticas, química, biología, física y más.
Instantáneo y preciso
Proporciona soluciones y orientación inmediatas y precisas.
Probar ahora
Tutores
AI
10x
La forma más rápida deObtenga respuestas y soluciones
Por texto

Introduce tu pregunta aquí…

Por imagen
Volver a cargar
Archivos subidos
xxxx.png0%
Enviar
📸 EL ESTUDIO PUEDE SER UNA VERDADERA LUCHA
Por qué no UpStudy It?
Seleccione su plan a continuación
Prima

Puedes disfrutar

  • Paso a paso explicaciones
  • Experto 24/7 tutores en vivo
  • Ilimitado número de preguntas
  • Sin interrupciones
  • Acceso completo para responder y
    solución
  • Acceso completo para chat en PDF, chat en UpStudy, chat de navegación
Básico
  • Limitado Soluciones