Q:
Mr Zwane is twice as old as his son. Ten years ago he was three
times as old as his son.
If the son is * years old, determine the age of Mr Zwane in terms of
*
Find the ages of Mr Zwane and his son ten years ago in terms of \( x \).
Determine the present age of Mr Zwane.
Q:
2.4 Prove that the equation \( \frac{3}{4} x^{2}+9 x=-27 \) has only one rational root,
namely \( x=-6 \), without solving the equation.
Q:
b. \( \left(-7 p^{3} q^{2}\right)^{2} \times 2 p q^{4} \)
Q:
\( \begin{array}{ll}2.3 & \text { Solve for } r \\ & 3^{r}+3^{3-r}=28\end{array} \)
Q:
Change the subject of the following formula to \( t \)
\( S=\frac{1}{2} g t^{2} \)
Q:
Use the elimination method to solve the system: \( \left\{\begin{array}{c}2 x+y=2 \\ 3 x-2 y=-4\end{array}\right. \)
Q:
\( \left. \begin{array} { l l } { A } & { T _ { n } = 4 n + 1 } \\ { B } & { T _ { n } = - 4 n + 9 } \\ { C . } & { T _ { n } = - 2 n + 7 } \\ { D } & { T _ { n } = 2 n + 3 } \end{array} \right. \)
Q:
\( \begin{array}{ll} & \text { Given: } \frac{2 m-3}{3}-3 \geq \frac{2 m}{6} \\ \text { 2.2.1 } & \text { Solve for } m \\ \text { 2.1.2 } & \text { Represent your solution graphically. }\end{array} \)
Q:
2.2 Simplify fully.
\[ \frac{8^{n} \cdot 6^{n-3} \cdot 9^{1-n} \cdot 2^{0}}{16^{n-1} \cdot 3^{-n}} \]
Q:
\( 2.1 \quad \) Solve for \( p \) and \( q \) simultaneously.
\[ q+2 p=2 \text { and } q^{2}+2 p^{2}=3 q p \]
Pon a prueba tus conocimientos sobre Álgebra!
Seleccione la respuesta correcta y verifique su respuesta
Tutores
AI
10x
La forma más rápida deObtenga respuestas y soluciones
Por texto
Introduce tu pregunta aquí…
Por imagen
Volver a cargar
Enviar