girl-logo

Hacer preguntas

Precálculo preguntas y respuestas

Q:
\( \left(x+\frac{\pi}{4}\right)-\cos x=0 \) em \( [-\pi, \pi[ \)
Q:
53-62 : Grafique la función, no al localizar puntos sino empezando de las gráficas de las Figuras 4 y 9 . Exprese el dominio, rango \( y \) asíntota. .53. \( f(x)=\log _{2}(x-4) \) .55. \( g(x)=\log _{5}(-x) \) .57. \( y=2+\log _{3} x \) 59. \( y=1-\log _{10} x \) 61. \( y=|\ln x| \)
Q:
The domain is all real numbers, and the range is \( y \leq 0 \). The domain is \( x>0 \), and the range is all real numbers. The domain and range are all real numbers. The domain is \( x<0 \), and the range is \( y>0 \).
Q:
Dado el conjunto \( S=\{x \in R|\log | x-1 \mid<1\} * \) Determine \( S \cap([0,2] \cup[12,20]) \)
Q:
The exponential function given by \( \mathrm{H}(\mathrm{t}=80,038.18(1.0484) \), where \( t \) is the number of years after 2012, can be used to project the number of centenarians in a certain country. Use this function to project the centenarian population in this country in 2016 and in 2043 . The centenarian population in 2016 is approximately (Round to the nearest whole number.)
Q:
The number of concurrent users of a social networking site has increased dramatically since 2004. By 2013 , this social networking site could connect concurrently 70 million users online. The function \( \mathrm{P}(\mathrm{t})=2.566(1.476)^{\mathrm{l}} \), where t is the number of years after 2004, models this increase in millions of users. Estimate the number of users of this site that could be online concurrently in 2005 , in 2009 , and in 2012 . Round to the nearest million users. The number of users of this site that could be online concurrently in 2005 is approximately (Round to the nearest whole number.)
Q:
Escribe en forma polar los complejos sig \( z=(\operatorname{sen}(\alpha+\pi)+i \cos (\pi-\alpha) \)
Q:
The number of concurrent users of a social networking site has increased dramatically since 2000 . By 2009, this social networking site could connect concurrently 70 million users online. The function \( \mathrm{P}(\mathrm{t})=2.462(1.481)^{\mathrm{l}} \), where t is the number of years after 2000 , models this increase in millions of users. Estimate the number of users of this site that could be online concurrently in 2001 , in 2005 , and in 2008 . Round to the nearest million users. The number of users of this site that could be online concurrently in 2001 is approximately p(8)=37 million. (Round to the nearest whole number.)
Q:
Sea \( f:[-\pi, \pi] ® R \) la función definida por * \( f(x)=\cos ^{4}(x)+\operatorname{sen}^{2}(x)-1 \) ¿En cuántos puntos el gráfico de esta función interseca al eje de las abscisas? Tu respuesta
Q:
Write the sum using summation notation. There may be multiple representations. Use \( i \) as the index of summation. \( \frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32} \) We can write the sum as

Pon a prueba tus conocimientos sobre Precálculo!

Seleccione la respuesta correcta y verifique su respuesta

7 8 9 10 11 12 13 14 15 16
Tutores
AI
10x
La forma más rápida deObtenga respuestas y soluciones
Por texto

Introduce tu pregunta aquí…

Por imagen
Volver a cargar
Archivos subidos
xxxx.png0%
Enviar
📸 EL ESTUDIO PUEDE SER UNA VERDADERA LUCHA
Por qué no UpStudy It?
Seleccione su plan a continuación
Prima

Puedes disfrutar

  • Paso a paso explicaciones
  • Experto 24/7 tutores en vivo
  • Ilimitado número de preguntas
  • Sin interrupciones
  • Acceso completo para responder y
    solución
  • Acceso completo para chat en PDF, chat en UpStudy, chat de navegación
Básico
  • Limitado Soluciones