Q:
6. Una clínica realiza un análisis de colesterol en hombres mayores de 50 años, y luego de varios años de
investigación, concluye que la distribución de lecturas del colesterol sigue una distribución normal, con media
de \( 210 \mathrm{mg} / \mathrm{dl} \) y una desviación estándar de \( 15 \mathrm{mg} / \mathrm{dl} \). a) ¿Qué porcentaje de esta población tiene lecturas
mayores a \( 250 \mathrm{mg} / \mathrm{dl} \) de colesterol?, b) ¿Qué porcentaje tiene lecturas inferiores a 190,05 \( \mathrm{mg} / \mathrm{dl} \) ?
Q:
19. Find an example in a media
article (newspaper or
magazine; cite your
reference properly) where
the correlational data was
presented as if it were causal
data. Explain why, for this
data, there could be another
reason for this data to be
correlated. In other words, a
reason different than there
was a causal relationship
between the two variables.
(10 points)
Q:
What is the median of the following values?
\( 45,32,21,12,9,33,69,71,28,5 \)
A. 32
B. 28
C. 30
D. 33
Q:
An orange chew was selected 15 times.
A cherry chew was selected 3 times.
A peach chew was selected 2 times.
Q:
The number of a country's unemployed workers decreased from 3.2 million to
2.5 million last year. If the country's population remained constant at 74
million, how did its unemployment rate change last year?
A. It decreased by about \( 9 \% \).
B. It increased by about \( 1 \% \).
C. It decreased by about \( 1 \% \).
D. It increased by about \( 9 \% \).
Q:
A Ud. lo contratan para realizar una medición de iluminación en una imprenta y obtiene los siguientes valores en lux:
Taller de tipografia
Iluminación general: \( 250 ; 290 ; 340 ; 145 ; 310 ; 340 ; 300 ; 320 ; 300 \)
Rotativas:
Recepción: \( 450 ; 410 ; 425 ; 400 ; 300 ; 400 ; 475 ; 210 ; 460 \)
En base a los resultados obtenidos calcule el nivel de iluminación promedio compare con la ley y calcule la uniformidad. En
base a los resultados genere una conclución y posibles recomendaciones.
Q:
A population of values has a normal distribution with \( \mu=243.7 \) and \( \sigma=69.6 \). You intend to draw a
random sample of size \( n=81 \).
Find the probability that a single randomly selected value is between 256.8 and 265.4 .
\( P(256.8<X<265.4)=\square \)
Find the probability that a sample of size \( n=81 \) is randomly selected with a mean between 256.8 and
265.4 .
\( P(256.8<M<265.4)=\square \)
Enter your answers as numbers accurate to 4 decimal places. Answers obtained using exact \( z \)-scores or \( z \) -
scores rounded to 3 decimal places are accepted.
Q:
You intend to draw a random sample of size \( n=556 \) from a population whose parameter is \( p=0.83 \)
What is the mean of the distribution of sample proportions?
\( \mu_{\widehat{p}}=0.83 \)
What is the standard deviation of the distribution of sample proportions?
(Report answer accurate to 2 decimal places.)
\( \sigma_{\widehat{p}}=\square \)
Q:
\[ y_{i}=\beta_{1}+\beta_{2} x_{i 2}+\beta_{3} x_{i 3}+\varepsilon_{i}=x_{i}^{\prime} \beta+\varepsilon_{i} \]
a. Explain how the ordinary least squares estimator for \( \beta \) is determined and derive
an expression for \( b \).
b. Which assumptions are needed to make \( b \) an unbiased estimator for \( \beta \) ?
c. Explain how a confidence interval for \( \beta_{2} \) can be constructed. Which additional
d. Explain how one can test the hypothesis that \( \beta_{3}=1 \).
Q:
3.1.5 Data handling consist of a data handling cycle, in which step of the data handling
cycle will we identify the mean, mode and median also known as measures of
central tendency. Only write the appropriate letter that represents the step.
A. Develop a question.
B. Collect data.
C. Arrange data.
D. Summarise data.
E. Represent data.
F. Analyse data.
3.1 .6 Determine the probability of randomly selecting a month, which has an even
number, for the number of niny days in Johannesburg. Write your answer as a
fraction.
Tutores
AI
10x
La forma más rápida deObtenga respuestas y soluciones
Por texto
Introduce tu pregunta aquí…
Por imagen
Volver a cargar
Enviar