Question

\( \int _{}^{}\frac{e^{\sqrt [3]{x}}}{\sqrt [3]{x}} d x \)

Ask by Graham Page. in Palestine
Jan 26,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

האינטגרל הוא \( 3 e^{\sqrt[3]{x}} \left( \sqrt[3]{x} - 1 \right) + C \).

Solution

האינטגרל הנתון הוא: \[ \int \frac{e^{\sqrt[3]{x}}}{\sqrt[3]{x}} \, dx \] נבצע החלפה כך: נניח \( u = \sqrt[3]{x} \), אז \( x = u^3 \) ו-\( dx = 3u^2 du \). החלפת המשתנים באינטגרל נותנת: \[ \int \frac{e^{u}}{u} \cdot 3u^2 \, du = 3 \int u e^{u} \, du \] כעת נבצע אינטגרציה בחלקים: \[ \int u e^{u} \, du = u e^{u} - \int e^{u} \, du = e^{u}(u - 1) + C \] לכן, הפתרון הסופי של האינטגרל הוא: \[ 3 e^{\sqrt[3]{x}} \left( \sqrt[3]{x} - 1 \right) + C \] כאשר \( C \) הוא קבוע האינטגרציה.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Bonus Knowledge

To tackle the integral \( \int \frac{e^{\sqrt[3]{x}}}{\sqrt[3]{x}} \, dx \), we can use substitution to simplify our work. Let \( u = \sqrt[3]{x} \), which implies that \( x = u^3 \) and \( dx = 3u^2 \, du \). Substituting these into the integral gives us: \[ \int \frac{e^{u}}{u} \cdot 3u^2 \, du = 3 \int u e^u \, du \] Next, we can apply integration by parts here, where we let \( v = e^u \) and \( w' = u \). This results in \( dv = e^u \, du \) and \( w = \frac{u^2}{2} \). Thus: \[ 3 \left( u e^u - \int e^u \, du \right) = 3 \left( u e^u - e^u \right) + C \] Now reverting back to the variable \( x \) gives us \( u = \sqrt[3]{x} \): \[ 3 \left( \sqrt[3]{x} e^{\sqrt[3]{x}} - e^{\sqrt[3]{x}} \right) + C \] Therefore, the integral evaluates to: \[ 3 e^{\sqrt[3]{x}} \left( \sqrt[3]{x} - 1 \right) + C \]

Related Questions

Latest Calculus Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy