Question
upstudy study bank question image url

Factoring By Grouping Date \( \qquad \) Period Factor each completely. 1) \( 12 a^{3}-9 a^{2}+4 a-3 \) 2) \( 2 p^{3}+5 p^{2}+6 p+15 \) 3) \( 3 n^{3}-4 n^{2}+9 n-12 \) 4) \( 12 n^{3}+4 n^{2}+3 n+1 \) 5) \( m^{3}-m^{2}+2 m-2 \) 6) \( 5 n^{3}-10 n^{2}+3 n-6 \) 7) \( 35 x y-5 x-56 y+8 \) 8) \( 224 a z+56 a c-84 y z-21 y c \)

Ask by Edwards Pearson. in South Africa
Feb 03,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

1. \( (3a^{2} + 1)(4a - 3) \) 2. \( (p^{2} + 3)(2p + 5) \) 3. \( (n^{2} + 3)(3n - 4) \) 4. \( (4n^{2} + 1)(3n + 1) \) 5. \( (m^{2} + 2)(m - 1) \) 6. \( (n - 2)(5n^{2} + 3) \) 7. \( (5x - 8)(7y - 1) \) 8. \( 7(8a - 3y)(4z + c) \)

Solution

Sure, let's factor each polynomial by grouping step by step. --- ### **1) \( 12a^{3} - 9a^{2} + 4a - 3 \)** **Step-by-Step:** 1. **Group terms:** \((12a^3 - 9a^2) + (4a - 3)\) 2. **Factor out the greatest common factor (GCF) from each group:** \(3a^2(4a - 3) + 1(4a - 3)\) 3. **Factor out the common binomial:** \((3a^2 + 1)(4a - 3)\) **Factored Form:** \[ \boxed{(3a^{2} + 1)(4a - 3)} \] --- ### **2) \( 2p^{3} + 5p^{2} + 6p + 15 \)** **Step-by-Step:** 1. **Group terms:** \((2p^3 + 5p^2) + (6p + 15)\) 2. **Factor out the GCF from each group:** \(p^2(2p + 5) + 3(2p + 5)\) 3. **Factor out the common binomial:** \((p^2 + 3)(2p + 5)\) **Factored Form:** \[ \boxed{(p^{2} + 3)(2p + 5)} \] --- ### **3) \( 3n^{3} - 4n^{2} + 9n - 12 \)** **Step-by-Step:** 1. **Group terms:** \((3n^3 - 4n^2) + (9n - 12)\) 2. **Factor out the GCF from each group:** \(n^2(3n - 4) + 3(3n - 4)\) 3. **Factor out the common binomial:** \((n^2 + 3)(3n - 4)\) **Factored Form:** \[ \boxed{(n^{2} + 3)(3n - 4)} \] --- ### **4) \( 12n^{3} + 4n^{2} + 3n + 1 \)** **Step-by-Step:** 1. **Group terms:** \((12n^3 + 4n^2) + (3n + 1)\) 2. **Factor out the GCF from each group:** \(4n^2(3n + 1) + 1(3n + 1)\) 3. **Factor out the common binomial:** \((4n^2 + 1)(3n + 1)\) **Factored Form:** \[ \boxed{(4n^{2} + 1)(3n + 1)} \] --- ### **5) \( m^{3} - m^{2} + 2m - 2 \)** **Step-by-Step:** 1. **Group terms:** \((m^3 - m^2) + (2m - 2)\) 2. **Factor out the GCF from each group:** \(m^2(m - 1) + 2(m - 1)\) 3. **Factor out the common binomial:** \((m^2 + 2)(m - 1)\) **Factored Form:** \[ \boxed{(m^{2} + 2)(m - 1)} \] --- ### **6) \( 5n^{3} - 10n^{2} + 3n - 6 \)** **Step-by-Step:** 1. **Group terms:** \((5n^3 - 10n^2) + (3n - 6)\) 2. **Factor out the GCF from each group:** \(5n^2(n - 2) + 3(n - 2)\) 3. **Factor out the common binomial:** \((5n^2 + 3)(n - 2)\) **Factored Form:** \[ \boxed{(n - 2)(5n^{2} + 3)} \] --- ### **7) \( 35xy - 5x - 56yz + 8 \)** **Step-by-Step:** 1. **Group terms:** \((35xy - 5x) + (-56yz + 8)\) 2. **Factor out the GCF from each group:** \(5x(7y - 1) - 8(7y - 1)\) 3. **Factor out the common binomial:** \((5x - 8)(7y - 1)\) **Factored Form:** \[ \boxed{(5x - 8)(7y - 1)} \] --- ### **8) \( 224az + 56ac - 84yz - 21yc \)** **Step-by-Step:** 1. **Group terms:** \((224az + 56ac) + (-84yz - 21yc)\) 2. **Factor out the GCF from each group:** \(56a(4z + c) - 21y(4z + c)\) 3. **Factor out the common binomial:** \((56a - 21y)(4z + c)\) 4. **Factor out the GCF from the first binomial:** \(7(8a - 3y)(4z + c)\) **Factored Form:** \[ \boxed{7(8a - 3y)(4z + c)} \] --- Each polynomial has been successfully factored by grouping, resulting in the expressions above.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Bonus Knowledge

Factoring by grouping is a method that cleverly chunks polynomials into smaller parts to identify common factors. It’s like solving a puzzle! For example, if you take the polynomial \( 12a^3 - 9a^2 + 4a - 3 \), you can rearrange and group the terms: \( (12a^3 - 9a^2) + (4a - 3) \). This reveals common factors in each group, leading to a simplified expression! Have you ever tried factoring by grouping in real-world scenarios? It’s not just for math problems in textbooks! For example, if you’re splitting costs among friends for a group outing or organizing your expenses, factoring can help in identifying common expenses (or savings!) across different categories. This approach can make budgeting much simpler and more efficient!

Related Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy