Pregunta
upstudy study bank question image url

Factoring By Grouping Date \( \qquad \) Period Factor each completely. 1) \( 12 a^{3}-9 a^{2}+4 a-3 \) 2) \( 2 p^{3}+5 p^{2}+6 p+15 \) 3) \( 3 n^{3}-4 n^{2}+9 n-12 \) 4) \( 12 n^{3}+4 n^{2}+3 n+1 \) 5) \( m^{3}-m^{2}+2 m-2 \) 6) \( 5 n^{3}-10 n^{2}+3 n-6 \) 7) \( 35 x y-5 x-56 y+8 \) 8) \( 224 a z+56 a c-84 y z-21 y c \)

Ask by Edwards Pearson. in South Africa
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

1. \( (3a^{2} + 1)(4a - 3) \) 2. \( (p^{2} + 3)(2p + 5) \) 3. \( (n^{2} + 3)(3n - 4) \) 4. \( (4n^{2} + 1)(3n + 1) \) 5. \( (m^{2} + 2)(m - 1) \) 6. \( (n - 2)(5n^{2} + 3) \) 7. \( (5x - 8)(7y - 1) \) 8. \( 7(8a - 3y)(4z + c) \)

Solución

Sure, let's factor each polynomial by grouping step by step. --- ### **1) \( 12a^{3} - 9a^{2} + 4a - 3 \)** **Step-by-Step:** 1. **Group terms:** \((12a^3 - 9a^2) + (4a - 3)\) 2. **Factor out the greatest common factor (GCF) from each group:** \(3a^2(4a - 3) + 1(4a - 3)\) 3. **Factor out the common binomial:** \((3a^2 + 1)(4a - 3)\) **Factored Form:** \[ \boxed{(3a^{2} + 1)(4a - 3)} \] --- ### **2) \( 2p^{3} + 5p^{2} + 6p + 15 \)** **Step-by-Step:** 1. **Group terms:** \((2p^3 + 5p^2) + (6p + 15)\) 2. **Factor out the GCF from each group:** \(p^2(2p + 5) + 3(2p + 5)\) 3. **Factor out the common binomial:** \((p^2 + 3)(2p + 5)\) **Factored Form:** \[ \boxed{(p^{2} + 3)(2p + 5)} \] --- ### **3) \( 3n^{3} - 4n^{2} + 9n - 12 \)** **Step-by-Step:** 1. **Group terms:** \((3n^3 - 4n^2) + (9n - 12)\) 2. **Factor out the GCF from each group:** \(n^2(3n - 4) + 3(3n - 4)\) 3. **Factor out the common binomial:** \((n^2 + 3)(3n - 4)\) **Factored Form:** \[ \boxed{(n^{2} + 3)(3n - 4)} \] --- ### **4) \( 12n^{3} + 4n^{2} + 3n + 1 \)** **Step-by-Step:** 1. **Group terms:** \((12n^3 + 4n^2) + (3n + 1)\) 2. **Factor out the GCF from each group:** \(4n^2(3n + 1) + 1(3n + 1)\) 3. **Factor out the common binomial:** \((4n^2 + 1)(3n + 1)\) **Factored Form:** \[ \boxed{(4n^{2} + 1)(3n + 1)} \] --- ### **5) \( m^{3} - m^{2} + 2m - 2 \)** **Step-by-Step:** 1. **Group terms:** \((m^3 - m^2) + (2m - 2)\) 2. **Factor out the GCF from each group:** \(m^2(m - 1) + 2(m - 1)\) 3. **Factor out the common binomial:** \((m^2 + 2)(m - 1)\) **Factored Form:** \[ \boxed{(m^{2} + 2)(m - 1)} \] --- ### **6) \( 5n^{3} - 10n^{2} + 3n - 6 \)** **Step-by-Step:** 1. **Group terms:** \((5n^3 - 10n^2) + (3n - 6)\) 2. **Factor out the GCF from each group:** \(5n^2(n - 2) + 3(n - 2)\) 3. **Factor out the common binomial:** \((5n^2 + 3)(n - 2)\) **Factored Form:** \[ \boxed{(n - 2)(5n^{2} + 3)} \] --- ### **7) \( 35xy - 5x - 56yz + 8 \)** **Step-by-Step:** 1. **Group terms:** \((35xy - 5x) + (-56yz + 8)\) 2. **Factor out the GCF from each group:** \(5x(7y - 1) - 8(7y - 1)\) 3. **Factor out the common binomial:** \((5x - 8)(7y - 1)\) **Factored Form:** \[ \boxed{(5x - 8)(7y - 1)} \] --- ### **8) \( 224az + 56ac - 84yz - 21yc \)** **Step-by-Step:** 1. **Group terms:** \((224az + 56ac) + (-84yz - 21yc)\) 2. **Factor out the GCF from each group:** \(56a(4z + c) - 21y(4z + c)\) 3. **Factor out the common binomial:** \((56a - 21y)(4z + c)\) 4. **Factor out the GCF from the first binomial:** \(7(8a - 3y)(4z + c)\) **Factored Form:** \[ \boxed{7(8a - 3y)(4z + c)} \] --- Each polynomial has been successfully factored by grouping, resulting in the expressions above.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

Factoring by grouping is a method that cleverly chunks polynomials into smaller parts to identify common factors. It’s like solving a puzzle! For example, if you take the polynomial \( 12a^3 - 9a^2 + 4a - 3 \), you can rearrange and group the terms: \( (12a^3 - 9a^2) + (4a - 3) \). This reveals common factors in each group, leading to a simplified expression! Have you ever tried factoring by grouping in real-world scenarios? It’s not just for math problems in textbooks! For example, if you’re splitting costs among friends for a group outing or organizing your expenses, factoring can help in identifying common expenses (or savings!) across different categories. This approach can make budgeting much simpler and more efficient!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad