Answer
Here are the simplified forms of the given complex fractions:
a. \( \frac{z - 3i}{i} = -iz - 3 \)
b. \( \frac{1 - 7i}{-2 - 4i} = \frac{13}{10} + \frac{9}{10}i \)
c. \( \frac{1 - 2i}{i - 5} = -\frac{7}{26} + \frac{9}{26}i \)
d. \( \frac{\sqrt{2} + 5i}{-3i + \sqrt{2}} = -\frac{13}{11} + \frac{8\sqrt{2}}{11}i \)
Solution
Sure, let's simplify each of the given complex fractions step by step.
---
### **Problem 1. Simplify:**
#### **a. \( \frac{z - 3i}{i} \)**
**Solution:**
To simplify \( \frac{z - 3i}{i} \), we can separate the terms in the numerator:
\[
\frac{z - 3i}{i} = \frac{z}{i} - \frac{3i}{i}
\]
Simplifying each term:
1. \( \frac{z}{i} \):
Remember that \( \frac{1}{i} = -i \) (since \( i \times (-i) = 1 \)).
\[
\frac{z}{i} = z \times \frac{1}{i} = z \times (-i) = -iz
\]
2. \( \frac{3i}{i} \):
\[
\frac{3i}{i} = 3 \times \frac{i}{i} = 3 \times 1 = 3
\]
Putting it all together:
\[
\frac{z - 3i}{i} = -iz - 3
\]
**Final Answer:**
\[
\frac{z - 3i}{i} = -iz - 3
\]
---
#### **b. \( \frac{1 - 7i}{-2 - 4i} \)**
**Solution:**
To simplify the complex fraction, multiply the numerator and the denominator by the **conjugate** of the denominator.
1. **Conjugate of the denominator** \( -2 - 4i \) is \( -2 + 4i \).
2. Multiply numerator and denominator by \( -2 + 4i \):
\[
\frac{1 - 7i}{-2 - 4i} \times \frac{-2 + 4i}{-2 + 4i} = \frac{(1 - 7i)(-2 + 4i)}{(-2 - 4i)(-2 + 4i)}
\]
3. **Expand the numerator:**
\[
(1)(-2) + (1)(4i) + (-7i)(-2) + (-7i)(4i) = -2 + 4i + 14i - 28i^2
\]
Since \( i^2 = -1 \):
\[
-2 + 4i + 14i - 28(-1) = -2 + 18i + 28 = 26 + 18i
\]
4. **Expand the denominator:**
\[
(-2)^2 - (4i)^2 = 4 - 16i^2 = 4 - 16(-1) = 4 + 16 = 20
\]
5. **Combine the results:**
\[
\frac{26 + 18i}{20} = \frac{26}{20} + \frac{18}{20}i = \frac{13}{10} + \frac{9}{10}i
\]
**Final Answer:**
\[
\frac{1 - 7i}{-2 - 4i} = \frac{13}{10} + \frac{9}{10}i
\]
---
#### **c. \( \frac{1 - 2i}{i - 5} \)**
**Solution:**
Again, we'll multiply the numerator and the denominator by the **conjugate** of the denominator.
1. **Conjugate of the denominator** \( i - 5 \) is \( -5 - i \).
2. Multiply numerator and denominator by \( -5 - i \):
\[
\frac{1 - 2i}{i - 5} \times \frac{-5 - i}{-5 - i} = \frac{(1 - 2i)(-5 - i)}{(i - 5)(-5 - i)}
\]
3. **Expand the numerator:**
\[
(1)(-5) + (1)(-i) + (-2i)(-5) + (-2i)(-i) = -5 - i + 10i + 2i^2
\]
Since \( i^2 = -1 \):
\[
-5 - i + 10i + 2(-1) = -5 + 9i - 2 = -7 + 9i
\]
4. **Expand the denominator:**
\[
(i)(-5) + (i)(-i) + (-5)(-5) + (-5)(-i) = -5i -i^2 + 25 + 5i
\]
Again, \( i^2 = -1 \):
\[
-5i + 5i + 1 + 25 = 26
\]
5. **Combine the results:**
\[
\frac{-7 + 9i}{26} = -\frac{7}{26} + \frac{9}{26}i
\]
**Final Answer:**
\[
\frac{1 - 2i}{i - 5} = -\frac{7}{26} + \frac{9}{26}i
\]
---
#### **d. \( \frac{\sqrt{2} + 5i}{-3i + \sqrt{2}} \)**
**Solution:**
We'll multiply the numerator and the denominator by the **conjugate** of the denominator.
1. **Conjugate of the denominator** \( -3i + \sqrt{2} \) is \( \sqrt{2} + 3i \).
2. Multiply numerator and denominator by \( \sqrt{2} + 3i \):
\[
\frac{\sqrt{2} + 5i}{-3i + \sqrt{2}} \times \frac{\sqrt{2} + 3i}{\sqrt{2} + 3i} = \frac{(\sqrt{2} + 5i)(\sqrt{2} + 3i)}{(-3i + \sqrt{2})(\sqrt{2} + 3i)}
\]
3. **Expand the numerator:**
\[
(\sqrt{2})(\sqrt{2}) + (\sqrt{2})(3i) + (5i)(\sqrt{2}) + (5i)(3i) = 2 + 3\sqrt{2}i + 5\sqrt{2}i + 15i^2
\]
Since \( i^2 = -1 \):
\[
2 + 8\sqrt{2}i + 15(-1) = 2 + 8\sqrt{2}i - 15 = -13 + 8\sqrt{2}i
\]
4. **Expand the denominator:**
\[
(-3i)(\sqrt{2}) + (-3i)(3i) + (\sqrt{2})(\sqrt{2}) + (\sqrt{2})(3i) = -3\sqrt{2}i - 9i^2 + 2 + 3\sqrt{2}i
\]
Again, \( i^2 = -1 \):
\[
-3\sqrt{2}i + 3\sqrt{2}i + 9 + 2 = 11
\]
5. **Combine the results:**
\[
\frac{-13 + 8\sqrt{2}i}{11} = -\frac{13}{11} + \frac{8\sqrt{2}}{11}i
\]
**Final Answer:**
\[
\frac{\sqrt{2} + 5i}{-3i + \sqrt{2}} = -\frac{13}{11} + \frac{8\sqrt{2}}{11}i
\]
---
### **Summary of All Simplified Forms:**
- **a.**
\[
\frac{z - 3i}{i} = -iz - 3
\]
- **b.**
\[
\frac{1 - 7i}{-2 - 4i} = \frac{13}{10} + \frac{9}{10}i
\]
- **c.**
\[
\frac{1 - 2i}{i - 5} = -\frac{7}{26} + \frac{9}{26}i
\]
- **d.**
\[
\frac{\sqrt{2} + 5i}{-3i + \sqrt{2}} = -\frac{13}{11} + \frac{8\sqrt{2}}{11}i
\]
Reviewed and approved by the UpStudy tutoring team
Explain
Simplify this solution