Question
upstudy study bank question image url

Iqic: Division 1. Simplify: a. \( \frac{z-3 i}{i} \) b) \( \frac{1-7 i}{-2-4 i} \) c \( \frac{1-2 i}{i-5} \) d. \( \frac{\sqrt{2}+5 i}{-3 i+\sqrt{2}} \)

Ask by Ramirez Hamilton. in South Africa
Jan 29,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Here are the simplified forms of the given complex fractions: a. \( \frac{z - 3i}{i} = -iz - 3 \) b. \( \frac{1 - 7i}{-2 - 4i} = \frac{13}{10} + \frac{9}{10}i \) c. \( \frac{1 - 2i}{i - 5} = -\frac{7}{26} + \frac{9}{26}i \) d. \( \frac{\sqrt{2} + 5i}{-3i + \sqrt{2}} = -\frac{13}{11} + \frac{8\sqrt{2}}{11}i \)

Solution

Sure, let's simplify each of the given complex fractions step by step. --- ### **Problem 1. Simplify:** #### **a. \( \frac{z - 3i}{i} \)** **Solution:** To simplify \( \frac{z - 3i}{i} \), we can separate the terms in the numerator: \[ \frac{z - 3i}{i} = \frac{z}{i} - \frac{3i}{i} \] Simplifying each term: 1. \( \frac{z}{i} \): Remember that \( \frac{1}{i} = -i \) (since \( i \times (-i) = 1 \)). \[ \frac{z}{i} = z \times \frac{1}{i} = z \times (-i) = -iz \] 2. \( \frac{3i}{i} \): \[ \frac{3i}{i} = 3 \times \frac{i}{i} = 3 \times 1 = 3 \] Putting it all together: \[ \frac{z - 3i}{i} = -iz - 3 \] **Final Answer:** \[ \frac{z - 3i}{i} = -iz - 3 \] --- #### **b. \( \frac{1 - 7i}{-2 - 4i} \)** **Solution:** To simplify the complex fraction, multiply the numerator and the denominator by the **conjugate** of the denominator. 1. **Conjugate of the denominator** \( -2 - 4i \) is \( -2 + 4i \). 2. Multiply numerator and denominator by \( -2 + 4i \): \[ \frac{1 - 7i}{-2 - 4i} \times \frac{-2 + 4i}{-2 + 4i} = \frac{(1 - 7i)(-2 + 4i)}{(-2 - 4i)(-2 + 4i)} \] 3. **Expand the numerator:** \[ (1)(-2) + (1)(4i) + (-7i)(-2) + (-7i)(4i) = -2 + 4i + 14i - 28i^2 \] Since \( i^2 = -1 \): \[ -2 + 4i + 14i - 28(-1) = -2 + 18i + 28 = 26 + 18i \] 4. **Expand the denominator:** \[ (-2)^2 - (4i)^2 = 4 - 16i^2 = 4 - 16(-1) = 4 + 16 = 20 \] 5. **Combine the results:** \[ \frac{26 + 18i}{20} = \frac{26}{20} + \frac{18}{20}i = \frac{13}{10} + \frac{9}{10}i \] **Final Answer:** \[ \frac{1 - 7i}{-2 - 4i} = \frac{13}{10} + \frac{9}{10}i \] --- #### **c. \( \frac{1 - 2i}{i - 5} \)** **Solution:** Again, we'll multiply the numerator and the denominator by the **conjugate** of the denominator. 1. **Conjugate of the denominator** \( i - 5 \) is \( -5 - i \). 2. Multiply numerator and denominator by \( -5 - i \): \[ \frac{1 - 2i}{i - 5} \times \frac{-5 - i}{-5 - i} = \frac{(1 - 2i)(-5 - i)}{(i - 5)(-5 - i)} \] 3. **Expand the numerator:** \[ (1)(-5) + (1)(-i) + (-2i)(-5) + (-2i)(-i) = -5 - i + 10i + 2i^2 \] Since \( i^2 = -1 \): \[ -5 - i + 10i + 2(-1) = -5 + 9i - 2 = -7 + 9i \] 4. **Expand the denominator:** \[ (i)(-5) + (i)(-i) + (-5)(-5) + (-5)(-i) = -5i -i^2 + 25 + 5i \] Again, \( i^2 = -1 \): \[ -5i + 5i + 1 + 25 = 26 \] 5. **Combine the results:** \[ \frac{-7 + 9i}{26} = -\frac{7}{26} + \frac{9}{26}i \] **Final Answer:** \[ \frac{1 - 2i}{i - 5} = -\frac{7}{26} + \frac{9}{26}i \] --- #### **d. \( \frac{\sqrt{2} + 5i}{-3i + \sqrt{2}} \)** **Solution:** We'll multiply the numerator and the denominator by the **conjugate** of the denominator. 1. **Conjugate of the denominator** \( -3i + \sqrt{2} \) is \( \sqrt{2} + 3i \). 2. Multiply numerator and denominator by \( \sqrt{2} + 3i \): \[ \frac{\sqrt{2} + 5i}{-3i + \sqrt{2}} \times \frac{\sqrt{2} + 3i}{\sqrt{2} + 3i} = \frac{(\sqrt{2} + 5i)(\sqrt{2} + 3i)}{(-3i + \sqrt{2})(\sqrt{2} + 3i)} \] 3. **Expand the numerator:** \[ (\sqrt{2})(\sqrt{2}) + (\sqrt{2})(3i) + (5i)(\sqrt{2}) + (5i)(3i) = 2 + 3\sqrt{2}i + 5\sqrt{2}i + 15i^2 \] Since \( i^2 = -1 \): \[ 2 + 8\sqrt{2}i + 15(-1) = 2 + 8\sqrt{2}i - 15 = -13 + 8\sqrt{2}i \] 4. **Expand the denominator:** \[ (-3i)(\sqrt{2}) + (-3i)(3i) + (\sqrt{2})(\sqrt{2}) + (\sqrt{2})(3i) = -3\sqrt{2}i - 9i^2 + 2 + 3\sqrt{2}i \] Again, \( i^2 = -1 \): \[ -3\sqrt{2}i + 3\sqrt{2}i + 9 + 2 = 11 \] 5. **Combine the results:** \[ \frac{-13 + 8\sqrt{2}i}{11} = -\frac{13}{11} + \frac{8\sqrt{2}}{11}i \] **Final Answer:** \[ \frac{\sqrt{2} + 5i}{-3i + \sqrt{2}} = -\frac{13}{11} + \frac{8\sqrt{2}}{11}i \] --- ### **Summary of All Simplified Forms:** - **a.** \[ \frac{z - 3i}{i} = -iz - 3 \] - **b.** \[ \frac{1 - 7i}{-2 - 4i} = \frac{13}{10} + \frac{9}{10}i \] - **c.** \[ \frac{1 - 2i}{i - 5} = -\frac{7}{26} + \frac{9}{26}i \] - **d.** \[ \frac{\sqrt{2} + 5i}{-3i + \sqrt{2}} = -\frac{13}{11} + \frac{8\sqrt{2}}{11}i \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Extra Insights

To simplify these complex divisions, we’ll multiply both the numerator and the denominator by the complex conjugate of the denominator. 1. For \( \frac{z-3 i}{i} \), you can simplify by dividing both parts separately: \(\frac{z}{i} - 3 = -iz - 3\) 2. For \( \frac{1-7 i}{-2-4 i} \), multiply the numerator and denominator by the conjugate \(-2 + 4i\): = \( \frac{(1-7i)(-2 + 4i)}{(-2-4i)(-2+4i)} = \frac{-2 + 4i + 14 + 28i}{4 + 16} = \frac{12 + 32i}{20} = \frac{3 + 8i}{5} \) 3. For \( \frac{1-2 i}{i-5} \), again you can multiply by the conjugate \(5+i\): = \( \frac{(1-2i)(5+i)}{(i-5)(5+i)} = \frac{5 + i - 10i - 2}{-25-1} = \frac{3 - 9i}{-26} = -\frac{3}{26} + \frac{9i}{26} \) 4. Lastly, for \( \frac{\sqrt{2}+5 i}{-3 i+\sqrt{2}} \), multiply by the conjugate \(\sqrt{2}+3i\): = \( \frac{(\sqrt{2}+5i)(\sqrt{2}+3i)}{(-3i+\sqrt{2})(\sqrt{2}+3i)} = \frac{2 + 3\sqrt{2}i + 5\sqrt{2}i - 15}{2-9} = \frac{-13 + 8\sqrt{2}i}{-7}\) = \( \frac{13 - 8\sqrt{2}i}{7} \) Happy simplifying, and remember that complex numbers are just a whimsical part of mathematics!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy