Pregunta
upstudy study bank question image url

Iqic: Division 1. Simplify: a. \( \frac{z-3 i}{i} \) b) \( \frac{1-7 i}{-2-4 i} \) c \( \frac{1-2 i}{i-5} \) d. \( \frac{\sqrt{2}+5 i}{-3 i+\sqrt{2}} \)

Ask by Ramirez Hamilton. in South Africa
Jan 29,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Here are the simplified forms of the given complex fractions: a. \( \frac{z - 3i}{i} = -iz - 3 \) b. \( \frac{1 - 7i}{-2 - 4i} = \frac{13}{10} + \frac{9}{10}i \) c. \( \frac{1 - 2i}{i - 5} = -\frac{7}{26} + \frac{9}{26}i \) d. \( \frac{\sqrt{2} + 5i}{-3i + \sqrt{2}} = -\frac{13}{11} + \frac{8\sqrt{2}}{11}i \)

Solución

Sure, let's simplify each of the given complex fractions step by step. --- ### **Problem 1. Simplify:** #### **a. \( \frac{z - 3i}{i} \)** **Solution:** To simplify \( \frac{z - 3i}{i} \), we can separate the terms in the numerator: \[ \frac{z - 3i}{i} = \frac{z}{i} - \frac{3i}{i} \] Simplifying each term: 1. \( \frac{z}{i} \): Remember that \( \frac{1}{i} = -i \) (since \( i \times (-i) = 1 \)). \[ \frac{z}{i} = z \times \frac{1}{i} = z \times (-i) = -iz \] 2. \( \frac{3i}{i} \): \[ \frac{3i}{i} = 3 \times \frac{i}{i} = 3 \times 1 = 3 \] Putting it all together: \[ \frac{z - 3i}{i} = -iz - 3 \] **Final Answer:** \[ \frac{z - 3i}{i} = -iz - 3 \] --- #### **b. \( \frac{1 - 7i}{-2 - 4i} \)** **Solution:** To simplify the complex fraction, multiply the numerator and the denominator by the **conjugate** of the denominator. 1. **Conjugate of the denominator** \( -2 - 4i \) is \( -2 + 4i \). 2. Multiply numerator and denominator by \( -2 + 4i \): \[ \frac{1 - 7i}{-2 - 4i} \times \frac{-2 + 4i}{-2 + 4i} = \frac{(1 - 7i)(-2 + 4i)}{(-2 - 4i)(-2 + 4i)} \] 3. **Expand the numerator:** \[ (1)(-2) + (1)(4i) + (-7i)(-2) + (-7i)(4i) = -2 + 4i + 14i - 28i^2 \] Since \( i^2 = -1 \): \[ -2 + 4i + 14i - 28(-1) = -2 + 18i + 28 = 26 + 18i \] 4. **Expand the denominator:** \[ (-2)^2 - (4i)^2 = 4 - 16i^2 = 4 - 16(-1) = 4 + 16 = 20 \] 5. **Combine the results:** \[ \frac{26 + 18i}{20} = \frac{26}{20} + \frac{18}{20}i = \frac{13}{10} + \frac{9}{10}i \] **Final Answer:** \[ \frac{1 - 7i}{-2 - 4i} = \frac{13}{10} + \frac{9}{10}i \] --- #### **c. \( \frac{1 - 2i}{i - 5} \)** **Solution:** Again, we'll multiply the numerator and the denominator by the **conjugate** of the denominator. 1. **Conjugate of the denominator** \( i - 5 \) is \( -5 - i \). 2. Multiply numerator and denominator by \( -5 - i \): \[ \frac{1 - 2i}{i - 5} \times \frac{-5 - i}{-5 - i} = \frac{(1 - 2i)(-5 - i)}{(i - 5)(-5 - i)} \] 3. **Expand the numerator:** \[ (1)(-5) + (1)(-i) + (-2i)(-5) + (-2i)(-i) = -5 - i + 10i + 2i^2 \] Since \( i^2 = -1 \): \[ -5 - i + 10i + 2(-1) = -5 + 9i - 2 = -7 + 9i \] 4. **Expand the denominator:** \[ (i)(-5) + (i)(-i) + (-5)(-5) + (-5)(-i) = -5i -i^2 + 25 + 5i \] Again, \( i^2 = -1 \): \[ -5i + 5i + 1 + 25 = 26 \] 5. **Combine the results:** \[ \frac{-7 + 9i}{26} = -\frac{7}{26} + \frac{9}{26}i \] **Final Answer:** \[ \frac{1 - 2i}{i - 5} = -\frac{7}{26} + \frac{9}{26}i \] --- #### **d. \( \frac{\sqrt{2} + 5i}{-3i + \sqrt{2}} \)** **Solution:** We'll multiply the numerator and the denominator by the **conjugate** of the denominator. 1. **Conjugate of the denominator** \( -3i + \sqrt{2} \) is \( \sqrt{2} + 3i \). 2. Multiply numerator and denominator by \( \sqrt{2} + 3i \): \[ \frac{\sqrt{2} + 5i}{-3i + \sqrt{2}} \times \frac{\sqrt{2} + 3i}{\sqrt{2} + 3i} = \frac{(\sqrt{2} + 5i)(\sqrt{2} + 3i)}{(-3i + \sqrt{2})(\sqrt{2} + 3i)} \] 3. **Expand the numerator:** \[ (\sqrt{2})(\sqrt{2}) + (\sqrt{2})(3i) + (5i)(\sqrt{2}) + (5i)(3i) = 2 + 3\sqrt{2}i + 5\sqrt{2}i + 15i^2 \] Since \( i^2 = -1 \): \[ 2 + 8\sqrt{2}i + 15(-1) = 2 + 8\sqrt{2}i - 15 = -13 + 8\sqrt{2}i \] 4. **Expand the denominator:** \[ (-3i)(\sqrt{2}) + (-3i)(3i) + (\sqrt{2})(\sqrt{2}) + (\sqrt{2})(3i) = -3\sqrt{2}i - 9i^2 + 2 + 3\sqrt{2}i \] Again, \( i^2 = -1 \): \[ -3\sqrt{2}i + 3\sqrt{2}i + 9 + 2 = 11 \] 5. **Combine the results:** \[ \frac{-13 + 8\sqrt{2}i}{11} = -\frac{13}{11} + \frac{8\sqrt{2}}{11}i \] **Final Answer:** \[ \frac{\sqrt{2} + 5i}{-3i + \sqrt{2}} = -\frac{13}{11} + \frac{8\sqrt{2}}{11}i \] --- ### **Summary of All Simplified Forms:** - **a.** \[ \frac{z - 3i}{i} = -iz - 3 \] - **b.** \[ \frac{1 - 7i}{-2 - 4i} = \frac{13}{10} + \frac{9}{10}i \] - **c.** \[ \frac{1 - 2i}{i - 5} = -\frac{7}{26} + \frac{9}{26}i \] - **d.** \[ \frac{\sqrt{2} + 5i}{-3i + \sqrt{2}} = -\frac{13}{11} + \frac{8\sqrt{2}}{11}i \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To simplify these complex divisions, we’ll multiply both the numerator and the denominator by the complex conjugate of the denominator. 1. For \( \frac{z-3 i}{i} \), you can simplify by dividing both parts separately: \(\frac{z}{i} - 3 = -iz - 3\) 2. For \( \frac{1-7 i}{-2-4 i} \), multiply the numerator and denominator by the conjugate \(-2 + 4i\): = \( \frac{(1-7i)(-2 + 4i)}{(-2-4i)(-2+4i)} = \frac{-2 + 4i + 14 + 28i}{4 + 16} = \frac{12 + 32i}{20} = \frac{3 + 8i}{5} \) 3. For \( \frac{1-2 i}{i-5} \), again you can multiply by the conjugate \(5+i\): = \( \frac{(1-2i)(5+i)}{(i-5)(5+i)} = \frac{5 + i - 10i - 2}{-25-1} = \frac{3 - 9i}{-26} = -\frac{3}{26} + \frac{9i}{26} \) 4. Lastly, for \( \frac{\sqrt{2}+5 i}{-3 i+\sqrt{2}} \), multiply by the conjugate \(\sqrt{2}+3i\): = \( \frac{(\sqrt{2}+5i)(\sqrt{2}+3i)}{(-3i+\sqrt{2})(\sqrt{2}+3i)} = \frac{2 + 3\sqrt{2}i + 5\sqrt{2}i - 15}{2-9} = \frac{-13 + 8\sqrt{2}i}{-7}\) = \( \frac{13 - 8\sqrt{2}i}{7} \) Happy simplifying, and remember that complex numbers are just a whimsical part of mathematics!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad