Question
upstudy study bank question image url

2. Решить систему уравнений по формулам Крамера или с помощью обратной матрицы: \( \left\{\begin{array}{c}x_{1}+2 x_{2}+x_{3}=2 \\ 3 x_{1}+2 x_{2}+3 x_{3}=6 \\ 2 x_{1}-2 x_{2}-x_{3}=7\end{array}\right. \)

Ask by Franklin Dickson. in Russia
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Решение системы уравнений: \[ x_{1} = 3, \quad x_{2} = 0, \quad x_{3} = -1 \]

Solution

Решим систему уравнений методом Крамера. Дана система: \[ \begin{cases} x_{1} + 2x_{2} + x_{3} = 2 \\ 3x_{1} + 2x_{2} + 3x_{3} = 6 \\ 2x_{1} - 2x_{2} - x_{3} = 7 \end{cases} \] **Шаг 1: Запишем матрицу коэффициентов и найдём её определитель \( D \).** \[ A = \begin{pmatrix} 1 & 2 & 1 \\ 3 & 2 & 3 \\ 2 & -2 & -1 \end{pmatrix} \] Вычислим определитель \( D \): \[ D = 1 \cdot (2 \cdot (-1) - 3 \cdot (-2)) - 2 \cdot (3 \cdot (-1) - 3 \cdot 2) + 1 \cdot (3 \cdot (-2) - 2 \cdot 2) \] \[ D = 1 \cdot (-2 + 6) - 2 \cdot (-3 - 6) + 1 \cdot (-6 - 4) = 4 + 18 - 10 = 12 \] **Шаг 2: Найдём определители \( D_{1} \), \( D_{2} \), \( D_{3} \) путем замены соответствующих столбцов матрицы \( A \) столбцом свободных членов.** 1. **Для \( D_{1} \) заменяем первый столбец:** \[ A_{1} = \begin{pmatrix} 2 & 2 & 1 \\ 6 & 2 & 3 \\ 7 & -2 & -1 \end{pmatrix} \] \[ D_{1} = 2 \cdot (2 \cdot (-1) - 3 \cdot (-2)) - 2 \cdot (6 \cdot (-1) - 3 \cdot 7) + 1 \cdot (6 \cdot (-2) - 2 \cdot 7) \] \[ D_{1} = 2 \cdot (-2 + 6) - 2 \cdot (-6 - 21) + 1 \cdot (-12 - 14) = 8 + 54 - 26 = 36 \] \[ x_{1} = \frac{D_{1}}{D} = \frac{36}{12} = 3 \] 2. **Для \( D_{2} \) заменяем второй столбец:** \[ A_{2} = \begin{pmatrix} 1 & 2 & 1 \\ 3 & 6 & 3 \\ 2 & 7 & -1 \end{pmatrix} \] \[ D_{2} = 1 \cdot (6 \cdot (-1) - 3 \cdot 7) - 2 \cdot (3 \cdot (-1) - 3 \cdot 2) + 1 \cdot (3 \cdot 7 - 6 \cdot 2) \] \[ D_{2} = 1 \cdot (-6 - 21) - 2 \cdot (-3 - 6) + 1 \cdot (21 - 12) = -27 + 18 + 9 = 0 \] \[ x_{2} = \frac{D_{2}}{D} = \frac{0}{12} = 0 \] 3. **Для \( D_{3} \) заменяем третий столбец:** \[ A_{3} = \begin{pmatrix} 1 & 2 & 2 \\ 3 & 2 & 6 \\ 2 & -2 & 7 \end{pmatrix} \] \[ D_{3} = 1 \cdot (2 \cdot 7 - 6 \cdot (-2)) - 2 \cdot (3 \cdot 7 - 6 \cdot 2) + 2 \cdot (3 \cdot (-2) - 2 \cdot 2) \] \[ D_{3} = 1 \cdot (14 + 12) - 2 \cdot (21 - 12) + 2 \cdot (-6 - 4) = 26 - 18 - 20 = -12 \] \[ x_{3} = \frac{D_{3}}{D} = \frac{-12}{12} = -1 \] **Ответ:** \[ x_{1} = 3, \quad x_{2} = 0, \quad x_{3} = -1 \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy