Question
upstudy study bank question image url

1. ABCDEF is a regular hexagon in which \( \overrightarrow{B C} \) rep- resents \( \underline{b} \) and \( \overrightarrow{F C} \) represents \( 2 \underline{a} \). Express the vectors \( \overrightarrow{A B}, C D \) and \( \overrightarrow{B E} \) in terms of \( \underline{a} \) and \( \underline{b} \).

Ask by Daniels Chambers. in the United Kingdom
Feb 03,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

\[ \overrightarrow{A B} = -\underline{b}, \quad \overrightarrow{C D} = -\underline{b}, \quad \overrightarrow{B E} = -\underline{b} - 2\underline{a} \]

Solution

To express the vectors \( \overrightarrow{A B}, \overrightarrow{C D} \), and \( \overrightarrow{B E} \) in terms of \( \underline{a} \) and \( \underline{b} \), we first need to understand the geometry of the regular hexagon ABCDEF. 1. **Understanding the Hexagon:** - A regular hexagon can be inscribed in a circle, and its vertices can be represented in a coordinate system. - Let's place the hexagon in the Cartesian plane with the following coordinates: - \( A(1, 0) \) - \( B\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right) \) - \( C\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right) \) - \( D(-1, 0) \) - \( E\left(-\frac{1}{2}, -\frac{\sqrt{3}}{2}\right) \) - \( F\left(\frac{1}{2}, -\frac{\sqrt{3}}{2}\right) \) 2. **Given Vectors:** - \( \overrightarrow{BC} = \underline{b} \) - \( \overrightarrow{FC} = 2\underline{a} \) 3. **Finding the Vectors:** - We can express the vectors in terms of the coordinates of the points. ### Step 1: Calculate \( \overrightarrow{A B} \) \[ \overrightarrow{A B} = \overrightarrow{B} - \overrightarrow{A} = \left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right) - (1, 0) = \left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right) \] ### Step 2: Calculate \( \overrightarrow{C D} \) \[ \overrightarrow{C D} = \overrightarrow{D} - \overrightarrow{C} = (-1, 0) - \left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right) = \left(-\frac{1}{2}, -\frac{\sqrt{3}}{2}\right) \] ### Step 3: Calculate \( \overrightarrow{B E} \) \[ \overrightarrow{B E} = \overrightarrow{E} - \overrightarrow{B} = \left(-\frac{1}{2}, -\frac{\sqrt{3}}{2}\right) - \left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right) = (-1, -\sqrt{3}) \] ### Expressing in terms of \( \underline{a} \) and \( \underline{b} \) Now, we need to express these vectors in terms of \( \underline{a} \) and \( \underline{b} \). 1. From the given \( \overrightarrow{BC} = \underline{b} \), we can find \( \overrightarrow{AB} \) and \( \overrightarrow{CD} \) in terms of \( \underline{b} \): - Since \( \overrightarrow{BC} = C - B \), we can express \( \overrightarrow{AB} \) as: \[ \overrightarrow{AB} = -\underline{b} \] 2. For \( \overrightarrow{CD} \): - Since \( \overrightarrow{CD} = D - C \), we can express it as: \[ \overrightarrow{CD} = -\underline{b} \] 3. For \( \overrightarrow{BE} \): - Since \( \overrightarrow{FC} = 2\underline{a} \) and \( \overrightarrow{BE} = E - B \), we can express it as: \[ \overrightarrow{BE} = -\underline{b} - 2\underline{a} \] ### Final Expressions Thus, the vectors in terms of \( \underline{a} \) and \( \underline{b} \) are: - \( \overrightarrow{A B} = -\underline{b} \) - \( \overrightarrow{C D} = -\underline{b} \) - \( \overrightarrow{B E} = -\underline{b} - 2\underline{a} \)

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Mind Expander

In a regular hexagon, the vectors can be expressed relative to the given vectors by leveraging symmetry and geometry. For \( \overrightarrow{A B} \), we can determine it by realizing that moving from \( A \) to \( B \) is similar to moving along one side of the hexagon, which can be expressed as: \[ \overrightarrow{A B} = \underline{b} + \underline{a} \] Since \( C \) is directly across from \( A \) and \( B \), \( C D \) forms another side parallel to \( \overrightarrow{A B} \), so: \[ \overrightarrow{C D} = \underline{b} \] And for \( \overrightarrow{B E} \), we can derive it as follows since \( E \) is adjacent to \( B \) moving in the opposite direction from \( A \): \[ \overrightarrow{B E} = -\underline{b} + \underline{a} \] Thus, the expressions are \( \overrightarrow{A B} = \underline{b} + \underline{a}, \overrightarrow{C D} = \underline{b}, \text{ and } \overrightarrow{B E} = -\underline{b} + \underline{a} \).

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy