Question
4) \( \begin{array}{l}\text { त्रA) Simplify } \\ \sqrt{\frac{42}{75}} \\ \end{array} \) ?
Ask by Matthews Reed. in the United States
Jan 23,2025
Real Tutor Solution
Tutor-Verified Answer
Answer
\[
\frac{\sqrt{14}}{5}
\]
Solution
To simplify \( \sqrt{\frac{42}{75}} \), follow these steps:
1. **Simplify the Fraction Inside the Square Root:**
\[
\frac{42}{75} = \frac{6 \times 7}{3 \times 25} = \frac{2 \times 7}{25} = \frac{14}{25}
\]
Here, the common factor of 3 in the numerator and denominator cancels out.
2. **Take the Square Root of the Simplified Fraction:**
\[
\sqrt{\frac{14}{25}} = \frac{\sqrt{14}}{\sqrt{25}} = \frac{\sqrt{14}}{5}
\]
Since \( \sqrt{25} = 5 \), the expression simplifies to \( \frac{\sqrt{14}}{5} \).
**Final Answer:**
\[
\frac{\sqrt{14}}{5}
\]
Reviewed and approved by the UpStudy tutoring team
Like
error msg
Explain
Simplify this solution
Bonus Knowledge
पहले, हम इसे सरलतम रूप में लाने के लिए अंश और हर को उनके सबसे बड़े समापवर्तक (GCD) से भाग देंगे। 42 और 75 के लिए, GCD 3 है। तो: \[ \sqrt{\frac{42 \div 3}{75 \div 3}} = \sqrt{\frac{14}{25}} \] अब, हम इसे और सरल बना सकते हैं: \[ \sqrt{14} \div \sqrt{25} = \frac{\sqrt{14}}{5} \] तो अंत में, \(\sqrt{\frac{42}{75}} = \frac{\sqrt{14}}{5}\) है।