Question
upstudy study bank question image url

\( \sum _ { n = 1 } ^ { \infty } ( n + 2 ) ! ( x + 2 ) ^ { n } \)

Ask by Perkins Elliott. in Argentina
Feb 03,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

La serie \(\sum_{n=1}^{\infty} (n + 2)! \, (x + 2)^n\) **solo converge** cuando \(x = -2\). Para cualquier otro valor de \(x\), la serie **diverge**.

Solution

La serie que has proporcionado es: \[ \sum_{n=1}^{\infty} (n + 2)! \, (x + 2)^n \] ### Análisis de la Serie Para determinar la convergencia de esta serie, consideremos el comportamiento de sus términos generales: \[ a_n = (n + 2)! \, (x + 2)^n \] #### **1. Comportamiento de los Términos** El factorial \((n + 2)!\) crece muy rápidamente a medida que \(n\) aumenta. Por otro lado, \((x + 2)^n\) depende del valor de \(x\). Para analizar la convergencia, utilizaremos el **criterio de la raíz**. #### **2. Criterio de la Raíz** Calculamos el límite: \[ L = \lim_{n \to \infty} \sqrt[n]{|a_n|} = \lim_{n \to \infty} \sqrt[n]{(n + 2)! \, |x + 2|^n} \] Simplificando: \[ L = \lim_{n \to \infty} \sqrt[n]{(n + 2)!} \cdot |x + 2| \] Sabemos que: \[ \sqrt[n]{(n + 2)!} \approx \frac{n + 2}{e} \quad \text{cuando} \quad n \to \infty \] Por lo tanto: \[ L = \lim_{n \to \infty} \frac{n + 2}{e} \cdot |x + 2| = \infty \quad \text{si} \quad |x + 2| \neq 0 \] #### **3. Convergencia de la Serie** Según el **criterio de la raíz**, si \(L > 1\), la serie diverge. Dado que \(L = \infty\) para cualquier \(x \neq -2\), la serie **diverge** para todos los valores de \(x\) excepto cuando \(x + 2 = 0\), es decir, cuando \(x = -2\). #### **4. Caso Especial: \(x = -2\)** Si \(x = -2\), entonces \((x + 2)^n = 0^n = 0\) para todo \(n \geq 1\). Por lo tanto, cada término de la serie es igual a cero: \[ a_n = (n + 2)! \cdot 0 = 0 \] En este caso, la serie converge y su suma es: \[ \sum_{n=1}^{\infty} 0 = 0 \] ### **Conclusión** La serie \(\sum_{n=1}^{\infty} (n + 2)! \, (x + 2)^n\) **solo converge** cuando \(x = -2\). Para cualquier otro valor de \(x\), la serie **diverge** debido al rápido crecimiento del factorial \((n + 2)!\).

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Bonus Knowledge

To handle the infinite series \( \sum _ { n = 1 } ^ { \infty } ( n + 2 ) ! ( x + 2 ) ^ { n } \), we can observe the characteristics of the terms involved. The factorial grows quickly, and we can express the series in terms of a power series. To simplify, we can relate it to known power series, such as the exponential function, possibly involving derivatives due to the factorial. This could allow us to either find a closed form or evaluate its convergence based on the value of \( x \). On the other hand, if you substitute \( n + 2 \) with a new variable (let's say \( m \)), transforming the index would clarify the behavior of the series. This strategic substitution, where \( m = n + 2 \), will also lead to a better understanding of each factorial term's contribution to the overall sum when combined with the correspondingly adjusted powers of \( (x + 2) \). In either case, the key is recognizing the relationship between the polynomial growth from \( (x + 2)^n \) and the rapid factorial growth. المعادلة ممكن تكون تحدي لكنها تفتح لك باب الكوانين الأساسية في الريبينغ (التعويض والمعادلات) اللي تخليها سهلة. Just remember, breaking down the problem and employing strategic substitutions is often the secret sauce to tackling such series!

Related Questions

Latest Calculus Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy