MgO ceramic has heat capacity \( 940 \mathrm{~J} / \mathrm{kg} . \mathrm{K} \), coefficient of thermal expansion \( 13.5 \times 10^{-6} \) per \( { }^{\circ} \mathrm{C} \), thermal conductivity 37.7 W/m.K and density of \( 3.58 \mathrm{~g} / \mathrm{cm}^{3} \). Then the thermal diffusivity for MgO is \( \mathrm{cm}^{2} / \mathrm{s} \) (round off to two decimal places).
Real Tutor Solution
Answer
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Reviewed and approved by the UpStudy tutoring team
Extra Insights
To calculate the thermal diffusivity (\( \alpha \)) of MgO, you can use the formula: \[ \alpha = \frac{k}{\rho c} \] where: - \( k \) is the thermal conductivity (37.7 W/m·K), - \( \rho \) is the density (3.58 g/cm³ or 3580 kg/m³), - \( c \) is the heat capacity (940 J/kg·K). First, convert the density to kg/m³: \[ 3.58 \, \mathrm{g/cm}^3 = 3580 \, \mathrm{kg/m}^3 \] Now substitute the values into the formula: \[ \alpha = \frac{37.7 \, \mathrm{W/m \cdot K}}{3580 \, \mathrm{kg/m}^3 \cdot 940 \, \mathrm{J/kg \cdot K}} \] This becomes: \[ \alpha = \frac{37.7}{3580 \times 940} \] \[ \alpha = \frac{37.7}{3369200} \] \[ \alpha \approx 1.12 \times 10^{-5} \, \mathrm{m}^2/\mathrm{s} \] Now, convert it to cm²/s: \[ \alpha \approx 1.12 \times 10^{-5} \, \mathrm{m}^2/\mathrm{s} = 1.12 \, \mathrm{cm}^2/\mathrm{s} \] So, the thermal diffusivity for MgO is approximately \( 1.12 \, \mathrm{cm}^2/\mathrm{s} \).