Question
upstudy study bank question image url

Use the change-of-base formula and a calculator to evaluate the following logarithm. \( \log _{\pi} 71 \)

Ask by Brewer Hobbs. in the United States
Jan 22,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

\[ \log_{\pi} 71 \approx 3.7245 \]

Solution

To evaluate \( \log_{\pi} 71 \) using the change-of-base formula, follow these steps: ### **Step 1: Apply the Change-of-Base Formula** The change-of-base formula allows us to compute logarithms with any base using natural logarithms (base \( e \)) or common logarithms (base \( 10 \)). The formula is: \[ \log_{a} b = \frac{\ln b}{\ln a} \] For \( \log_{\pi} 71 \), this becomes: \[ \log_{\pi} 71 = \frac{\ln 71}{\ln \pi} \] ### **Step 2: Calculate the Natural Logarithms** Using a calculator, find the natural logarithms of 71 and \( \pi \): \[ \ln 71 \approx 4.262680526 \] \[ \ln \pi \approx 1.144222766 \] ### **Step 3: Divide the Results** Now, divide the two logarithmic values: \[ \log_{\pi} 71 = \frac{4.262680526}{1.144222766} \approx 3.7245 \] ### **Final Answer** \[ \log_{\pi} 71 \approx 3.7245 \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Extra Insights

To evaluate \( \log_{\pi} 71 \) using the change-of-base formula, we can express it as follows: \[ \log_{\pi} 71 = \frac{\log_{10} 71}{\log_{10} \pi} \] Using a scientific calculator, you can find that \( \log_{10} 71 \approx 1.8539 \) and \( \log_{10} \pi \approx 0.4971 \). Plugging these values into the formula gives: \[ \log_{\pi} 71 \approx \frac{1.8539}{0.4971} \approx 3.725 \] Now you have the value of \( \log_{\pi} 71 \) rounded to three decimal places! Remember, the choice of base in logarithms can significantly affect the computation’s context and applications, as different bases can represent various scenarios in science and engineering. For example, using base 10 provides insights into standard logarithmic scales, while base 2 is often found in computer science.

Latest Pre Algebra Questions

Write down the next two terms for each geometric sequence. a \( 2 ; 4 ; 8 ; 16 ; \ldots \) b \( 5 ; 15 ; 45 ; \ldots \) c \( 3 ; 6 ; 12 ; 24 ; \ldots \) d \( 18 ; 6 ; 2 ; \ldots \) e \( 20 ; 10 ; 5 ; \ldots \) f \( 4 ;-12 ; 36 ; \ldots \) g \( 7 ;-14 ; 28 ; \ldots \) h \( 8 ; 4 ; 2 ; \ldots \) i \( \frac{1}{9} ; \frac{1}{3} ; 1 ; \ldots \) j \( 500(1,25) ; 500(1,25)^{2} ; 500(1,25)^{3} ; \ldots \) k \( 1000(1,8) ; 1000(1,8)^{2} ; 1000(1,8)^{3} ; \ldots \) i \( 6000(1,1) ; 6000(1,1)^{2} ; 6000(1,1)^{3} ; \ldots \) m \( 400\left(1+\frac{0,09}{12}\right) ; 400\left(1+\frac{0,09}{12}\right)^{2} ; 400\left(1+\frac{0,09}{12}\right)^{3} ; \ldots \) n \( 300\left(1+\frac{0,1125}{4}\right) ; 300\left(1+\frac{0,1125}{4}\right)^{2} ; 300\left(1+\frac{0,1125}{4}\right)^{3} ; \ldots \) o \( x\left(1+\frac{0,092}{2}\right) ; x\left(1+\frac{0,092}{2}\right)^{2} ; x\left(1+\frac{0,092}{2}\right)^{3} ; \ldots \) 2 Find the first three terms for each geometric sequence. a \( \mathrm{T}_{1}=2 \) and \( r=3 \) b \( \mathrm{T}_{1}=4 \) and \( r=\frac{1}{2} \) c \( \mathrm{T}_{1}=12 \) and \( r=\frac{-1}{3} \) d \( T_{1}=500 \) and \( r=1,1 \) e. \( \mathrm{T}_{1}=8000 \) and \( r=\left(1+\frac{0,09}{4}\right) \) f \( T_{1}=3 \) and \( T_{6}=96 \) g \( \quad T_{1}=7 \) and \( T_{5}=\frac{7}{81} \) h \( T_{2}=6 \) and \( T_{7}=192 \) \( T_{3}=18 \) and \( T_{5}=162 \) -d \( T_{3}=16 \) and \( T_{7}=256 \) k \( T_{2}=10 \) and \( T_{5}=80 \) I \( T_{2}=3 \) and \( T_{6}=\frac{1}{27} \) Determine: a which term is equal to 1280 in the sequence \( 5 ; 10 ; 20 ; \ldots \) b which term is equal to 1536 in the sequence \( 3 ; 6 ; 12 ; \ldots \) c which term is equal to 6561 in the sequence \( 3 ; 9 ; 27 ; \ldots \) d which term is equal to \( \frac{5}{16384} \) in the sequence \( \frac{5}{4} ; \frac{5}{8} ; \frac{5}{16} ; \ldots \) e which term is equal to \( \frac{1}{8192} \) in the sequence \( 16 ; 8 ; 4 ; \ldots \)
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy