5. Use an appropriate change of variables to evaluate the integral \[ \iint_{R}(x+y) \mathrm{e}^{x^{2}-y^{2}} d A \] where \( R \) is the rectangle enclosed by the lines \( x-y=0, x-y=2, x+y=0 \), and \( x+y=3 \)
Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


Extra Insights
To evaluate the integral \[ I = \iint_{R}(x+y) \mathrm{e}^{x^{2}-y^{2}} dA, \] we will use a change of variables that simplifies the region \( R \) and the integrand. Let's define new variables: \[ u = x + y, \quad v = x - y. \] Next, we compute the Jacobian of the transformation. The inverse transformations are: \[ x = \frac{u + v}{2}, \quad y = \frac{u - v}{2}. \] Calculating the Jacobian \( J \) gives us: \[ \frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} = \begin{vmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{vmatrix} = \left(\frac{1}{2} \cdot -\frac{1}{2}\right) - \left(\frac{1}{2} \cdot \frac{1}{2}\right) = -\frac{1}{4} - \frac{1}{4} = -\frac{1}{2}. \] Thus, the absolute value of the Jacobian is \( \left| J \right| = \frac{1}{2} \). Next, we need to determine the region \( R \) in the \( uv \)-plane. The lines in the \( xy \)-coordinates translate as follows: - \( x-y = 0 \) gives \( v = 0 \), - \( x-y = 2 \) gives \( v = 2 \), - \( x+y = 0 \) gives \( u = 0 \), - \( x+y = 3 \) gives \( u = 3 \). Thus, in the \( uv \)-plane, the new region \( R' \) is a rectangle with corners at \( (0,0) \), \( (3,0) \), \( (3,2) \), and \( (0,2) \). Substituting into the integral, we have \( x+y = u \) and \( e^{x^2 - y^2} = e^{(x+y)(x-y)} = e^{u v} \). The integral becomes: \[ I = \iint_{R'} u e^{uv} \left| J \right| du dv = \frac{1}{2} \int_0^2 \int_0^3 u e^{uv} dudv. \] Now, we integrate with respect to \( u \): \[ \int_0^3 u e^{uv} du. \] Using integration by parts with \( w = u \) and \( dw = e^{uv} du \), we find: \[ \int u e^{uv} du = \frac{e^{uv}}{v} (u - \frac{1}{v}) + C. \] Evaluating from \( 0 \) to \( 3 \): \[ \int_0^3 u e^{uv} du = \left[\frac{e^{3v}}{v} (3 - \frac{1}{v})\right]_0^3 = \frac{e^{3v}}{v} (3 - \frac{1}{v}) - \lim_{u \to 0}\left[\frac{e^{0}}{v} (0 - \frac{1}{v})\right] = \frac{3 e^{3v} v - e^{3v}}{v^2}. \] Thus, \[ \int_0^2 \left[\frac{3 e^{3v} - e^{3v}}{v^2}\right] dv = \int_0^2 \frac{2 e^{3v}}{v^2} dv = e^{3v} (3) - {\text{evaluation at}} 0. \] Finally, wrap all in the Jacobian: \[ I = \frac{1}{2} \int_0^2 \left[3 e^{3v} - e^{3v}\right] dv = \frac{1}{2}(2 * 3)e^{6} = 6e^{6}. \] Thus, the evaluated integral is: \[