Question
upstudy study bank question image url

5. Use an appropriate change of variables to evaluate the integral \[ \iint_{R}(x+y) \mathrm{e}^{x^{2}-y^{2}} d A \] where \( R \) is the rectangle enclosed by the lines \( x-y=0, x-y=2, x+y=0 \), and \( x+y=3 \)

Ask by Flynn Hart. in the United States
Mar 31,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

The integral evaluates to \( \frac{1}{4}(e^{6} - 1) - \frac{3}{2} \).

Solution

We begin by considering the integral \[ I=\iint_R (x+y) \, e^{x^2-y^2}\,dA, \] with the region \( R \) bounded by the lines \[ x-y=0,\quad x-y=2,\quad x+y=0,\quad x+y=3. \] Because the boundaries are given in terms of \( x-y \) and \( x+y \), an appropriate change of variables is \[ u=x+y,\quad v=x-y. \] This transformation will also simplify the integrand. --- **Step 1. Express \( x \) and \( y \) in terms of \( u \) and \( v \)** Solve for \( x \) and \( y \): \[ x=\frac{u+v}{2},\quad y=\frac{u-v}{2}. \] --- **Step 2. Compute the Jacobian** The Jacobian \( J \) is determined by \[ J=\begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v}\\[1mm] \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix}. \] We have \[ \frac{\partial x}{\partial u}=\frac{1}{2},\quad \frac{\partial x}{\partial v}=\frac{1}{2},\quad \frac{\partial y}{\partial u}=\frac{1}{2},\quad \frac{\partial y}{\partial v}=-\frac{1}{2}. \] Thus, \[ J=\begin{vmatrix} \frac{1}{2} & \frac{1}{2}\\[1mm] \frac{1}{2} & -\frac{1}{2} \end{vmatrix}=\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)-\left(\frac{1}{2}\right)\left(\frac{1}{2}\right) =-\frac{1}{4}-\frac{1}{4}=-\frac{1}{2}. \] Taking the absolute value, we have \[ |J|=\frac{1}{2}\quad \Longrightarrow \quad dA = \frac{1}{2}\,du\,dv. \] --- **Step 3. Rewrite the integrand** The integrand consists of two parts: 1. The factor \( x+y \) becomes \[ x+y=u. \] 2. The exponent \( x^2-y^2 \). We calculate: \[ x^2-y^2=\left(\frac{u+v}{2}\right)^2-\left(\frac{u-v}{2}\right)^2. \] Expanding both squares: \[ \left(\frac{u+v}{2}\right)^2=\frac{u^2+2uv+v^2}{4},\quad \left(\frac{u-v}{2}\right)^2=\frac{u^2-2uv+v^2}{4}. \] Taking their difference: \[ x^2-y^2=\frac{(u^2+2uv+v^2)-(u^2-2uv+v^2)}{4} =\frac{4uv}{4}=uv. \] Thus, \[ e^{x^2-y^2}=e^{uv}. \] So the integrand in the new variables becomes \[ (x+y)e^{x^2-y^2}=u\,e^{uv}. \] --- **Step 4. Transform the region \( R \)** The region \( R \) is given by: - \( x-y=0 \) becomes \( v=0 \). - \( x-y=2 \) becomes \( v=2 \). - \( x+y=0 \) becomes \( u=0 \). - \( x+y=3 \) becomes \( u=3 \). Thus, in the \((u,v)\) plane, the region is the rectangle: \[ 0\leq u\leq 3,\quad 0\leq v\leq 2. \] --- **Step 5. Write the new integral** Substituting everything, we have \[ I=\iint_R (x+y)e^{x^2-y^2}\,dA =\int_{v=0}^{2}\int_{u=0}^{3} u\, e^{uv} \left(\frac{1}{2}\,du\,dv\right) =\frac{1}{2}\int_{v=0}^{2}\int_{u=0}^{3} u\,e^{uv}\,du\,dv. \] --- **Step 6. Change the order of integration** It is easier to integrate with respect to \( v \) first. Rewrite the integral by switching the order: \[ I=\frac{1}{2}\int_{u=0}^{3}\int_{v=0}^{2} u\,e^{uv}\,dv\,du. \] For a fixed \( u \), the inner integral with respect to \( v \) is: \[ \int_{v=0}^{2} e^{uv}\,dv. \] Since \( u \) is treated as constant, we have: \[ \int_{v=0}^{2} e^{uv}\,dv = \frac{1}{u}\left(e^{u\cdot 2}-1\right) =\frac{1}{u}\left(e^{2u}-1\right). \] Thus, the integral becomes \[ I=\frac{1}{2}\int_{u=0}^{3} u\left[\frac{1}{u}\left(e^{2u}-1\right)\right] du =\frac{1}{2}\int_{u=0}^{3}\left(e^{2u}-1\right)\,du. \] --- **Step 7. Evaluate the integral with respect to \( u \)** Break the integral into two parts: \[ I=\frac{1}{2}\left(\int_{u=0}^{3}e^{2u}\,du - \int_{u=0}^{3}1\,du\right). \] 1. For the first integral: \[ \int e^{2u}\,du = \frac{1}{2}e^{2u}, \] so \[ \int_{0}^{3} e^{2u}\,du=\frac{1}{2}\left(e^{6}-1\right). \] 2. For the second integral: \[ \int_{0}^{3}1\,du=3. \] Thus, \[ I=\frac{1}{2}\left[\frac{1}{2}\left(e^{6}-1\right)-3\right] =\frac{1}{4}\left(e^{6}-1\right)-\frac{3}{2}. \] --- **Final Answer:** \[ \boxed{\frac{1}{4}\left(e^{6}-1\right)-\frac{3}{2}} \]

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Extra Insights

To evaluate the integral \[ I = \iint_{R}(x+y) \mathrm{e}^{x^{2}-y^{2}} dA, \] we will use a change of variables that simplifies the region \( R \) and the integrand. Let's define new variables: \[ u = x + y, \quad v = x - y. \] Next, we compute the Jacobian of the transformation. The inverse transformations are: \[ x = \frac{u + v}{2}, \quad y = \frac{u - v}{2}. \] Calculating the Jacobian \( J \) gives us: \[ \frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} = \begin{vmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{vmatrix} = \left(\frac{1}{2} \cdot -\frac{1}{2}\right) - \left(\frac{1}{2} \cdot \frac{1}{2}\right) = -\frac{1}{4} - \frac{1}{4} = -\frac{1}{2}. \] Thus, the absolute value of the Jacobian is \( \left| J \right| = \frac{1}{2} \). Next, we need to determine the region \( R \) in the \( uv \)-plane. The lines in the \( xy \)-coordinates translate as follows: - \( x-y = 0 \) gives \( v = 0 \), - \( x-y = 2 \) gives \( v = 2 \), - \( x+y = 0 \) gives \( u = 0 \), - \( x+y = 3 \) gives \( u = 3 \). Thus, in the \( uv \)-plane, the new region \( R' \) is a rectangle with corners at \( (0,0) \), \( (3,0) \), \( (3,2) \), and \( (0,2) \). Substituting into the integral, we have \( x+y = u \) and \( e^{x^2 - y^2} = e^{(x+y)(x-y)} = e^{u v} \). The integral becomes: \[ I = \iint_{R'} u e^{uv} \left| J \right| du dv = \frac{1}{2} \int_0^2 \int_0^3 u e^{uv} dudv. \] Now, we integrate with respect to \( u \): \[ \int_0^3 u e^{uv} du. \] Using integration by parts with \( w = u \) and \( dw = e^{uv} du \), we find: \[ \int u e^{uv} du = \frac{e^{uv}}{v} (u - \frac{1}{v}) + C. \] Evaluating from \( 0 \) to \( 3 \): \[ \int_0^3 u e^{uv} du = \left[\frac{e^{3v}}{v} (3 - \frac{1}{v})\right]_0^3 = \frac{e^{3v}}{v} (3 - \frac{1}{v}) - \lim_{u \to 0}\left[\frac{e^{0}}{v} (0 - \frac{1}{v})\right] = \frac{3 e^{3v} v - e^{3v}}{v^2}. \] Thus, \[ \int_0^2 \left[\frac{3 e^{3v} - e^{3v}}{v^2}\right] dv = \int_0^2 \frac{2 e^{3v}}{v^2} dv = e^{3v} (3) - {\text{evaluation at}} 0. \] Finally, wrap all in the Jacobian: \[ I = \frac{1}{2} \int_0^2 \left[3 e^{3v} - e^{3v}\right] dv = \frac{1}{2}(2 * 3)e^{6} = 6e^{6}. \] Thus, the evaluated integral is: \[

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy