Question
upstudy study bank question image url

44. \( \int_{-2}^{2} f(x) d x \quad \) donde \( f(x)=\left\{\begin{array}{ll}2 & \text { si }-2 \leqslant x \leqslant 0 \\ 4-x^{2} & \text { si } 0
Ask by Norris Todd. in Colombia
Mar 31,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

El valor de la integral \( \int_{-2}^{2} f(x) \, dx \) es \( \frac{28}{3} \) o \( 9\frac{1}{3} \).

Solution

La función \( f(x) \) está definida en dos intervalos. Por lo tanto, podemos dividir la integral en dos partes: \[ \int_{-2}^{2} f(x) \, dx = \int_{-2}^{0} 2 \, dx + \int_{0}^{2} (4 - x^{2}) \, dx \] Calculemos la primera integral: \[ \int_{-2}^{0} 2 \, dx \] Evaluate the integral by following steps: - step0: Solution: \(\int_{-2}^{0} 2 dx\) - step1: Evaluate the integral: \(\int 2 dx\) - step2: Evaluate the integral: \(2x\) - step3: Return the limits: \(\left(2x\right)\bigg |_{-2}^{0}\) - step4: Calculate the value: \(4\) Ahora calculemos la segunda integral: \[ \int_{0}^{2} (4 - x^{2}) \, dx \] Evaluate the integral by following steps: - step0: Evaluate using formulas and rules: \(\int_{0}^{2} \left(4-x^{2}\right) dx\) - step1: Evaluate the integral: \(\int \left(4-x^{2}\right) dx\) - step2: Use properties of integrals: \(\int 4 dx+\int -x^{2} dx\) - step3: Evaluate the integral: \(4x+\int -x^{2} dx\) - step4: Evaluate the integral: \(4x-\frac{x^{3}}{3}\) - step5: Return the limits: \(\left(4x-\frac{x^{3}}{3}\right)\bigg |_{0}^{2}\) - step6: Calculate the value: \(\frac{16}{3}\) Los resultados de las integrales son: 1. \(\int_{-2}^{0} 2 \, dx = 4\) 2. \(\int_{0}^{2} (4 - x^{2}) \, dx = \frac{16}{3}\) Ahora sumamos ambos resultados: \[ 4 + \frac{16}{3} \] Calculate the value by following steps: - step0: Calculate: \(4+\frac{16}{3}\) - step1: Reduce fractions to a common denominator: \(\frac{4\times 3}{3}+\frac{16}{3}\) - step2: Transform the expression: \(\frac{4\times 3+16}{3}\) - step3: Multiply the numbers: \(\frac{12+16}{3}\) - step4: Add the numbers: \(\frac{28}{3}\)

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Extra Insights

Para resolver la integral definida \( \int_{-2}^{2} f(x) d x \), primero dividimos la integral en dos partes según la definición de \( f(x) \): \[ \int_{-2}^{2} f(x) dx = \int_{-2}^{0} 2 \, dx + \int_{0}^{2} (4 - x^2) \, dx \] Calculando la primera parte: \[ \int_{-2}^{0} 2 \, dx = 2[x]_{-2}^{0} = 2(0 - (-2)) = 2 \times 2 = 4 \] Ahora calculamos la segunda parte: \[ \int_{0}^{2} (4 - x^2) \, dx = [4x - \frac{x^3}{3}]_{0}^{2} = \left(4(2) - \frac{(2)^3}{3}\right) - \left(4(0) - \frac{(0)^3}{3}\right) \] \[ = 8 - \frac{8}{3} = \frac{24}{3} - \frac{8}{3} = \frac{16}{3} \] Sumando ambos resultados: \[ \int_{-2}^{2} f(x) dx = 4 + \frac{16}{3} = \frac{12}{3} + \frac{16}{3} = \frac{28}{3} \] Por lo tanto, el valor de la integral es: \[ \int_{-2}^{2} f(x) d x = \frac{28}{3} \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy