44. \( \int_{-2}^{2} f(x) d x \quad \) donde \( f(x)=\left\{\begin{array}{ll}2 & \text { si }-2 \leqslant x \leqslant 0 \\ 4-x^{2} & \text { si } 0
Ask by Norris Todd. in Colombia
Mar 31,2025
Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


Extra Insights
Para resolver la integral definida \( \int_{-2}^{2} f(x) d x \), primero dividimos la integral en dos partes según la definición de \( f(x) \): \[ \int_{-2}^{2} f(x) dx = \int_{-2}^{0} 2 \, dx + \int_{0}^{2} (4 - x^2) \, dx \] Calculando la primera parte: \[ \int_{-2}^{0} 2 \, dx = 2[x]_{-2}^{0} = 2(0 - (-2)) = 2 \times 2 = 4 \] Ahora calculamos la segunda parte: \[ \int_{0}^{2} (4 - x^2) \, dx = [4x - \frac{x^3}{3}]_{0}^{2} = \left(4(2) - \frac{(2)^3}{3}\right) - \left(4(0) - \frac{(0)^3}{3}\right) \] \[ = 8 - \frac{8}{3} = \frac{24}{3} - \frac{8}{3} = \frac{16}{3} \] Sumando ambos resultados: \[ \int_{-2}^{2} f(x) dx = 4 + \frac{16}{3} = \frac{12}{3} + \frac{16}{3} = \frac{28}{3} \] Por lo tanto, el valor de la integral es: \[ \int_{-2}^{2} f(x) d x = \frac{28}{3} \]