Question
upstudy study bank question image url

56) \( \frac{1}{x^{4}-1} \)

Ask by Wang Fowler. in Mexico
Mar 31,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

\[ \frac{1}{x^4-1} = \frac{1}{4(x-1)} - \frac{1}{4(x+1)} - \frac{1}{2(x^2+1)} \]

Solution

1. Factorizamos el denominador: \[ x^4 - 1 = (x^2 - 1)(x^2 + 1) = (x - 1)(x + 1)(x^2 + 1) \] 2. Planteamos la descomposición en fracciones parciales: \[ \frac{1}{x^4 - 1} = \frac{A}{x - 1} + \frac{B}{x + 1} + \frac{Cx + D}{x^2 + 1} \] 3. Multiplicamos ambos lados de la ecuación por \((x - 1)(x + 1)(x^2 + 1)\) para eliminar los denominadores: \[ 1 = A(x + 1)(x^2 + 1) + B(x - 1)(x^2 + 1) + (Cx + D)(x^2 - 1) \] 4. Expandimos cada término: - Expansión de \(A(x + 1)(x^2 + 1)\): \[ A(x^3 + x^2 + x + 1) = Ax^3 + Ax^2 + Ax + A \] - Expansión de \(B(x - 1)(x^2 + 1)\): \[ B(x^3 - x^2 + x - 1) = Bx^3 - Bx^2 + Bx - B \] - Expansión de \((Cx + D)(x^2 - 1)\): \[ Cx(x^2 - 1) + D(x^2 - 1) = Cx^3 - Cx + Dx^2 - D \] 5. Sumamos los términos para obtener la expansión total: \[ 1 = (A + B + C)x^3 + (A - B + D)x^2 + (A + B - C)x + (A - B - D) \] 6. Igualamos los coeficientes de los mismos grados al polinomio constante 1, es decir: - Coeficiente de \(x^3\): \[ A + B + C = 0 \quad (1) \] - Coeficiente de \(x^2\): \[ A - B + D = 0 \quad (2) \] - Coeficiente de \(x\): \[ A + B - C = 0 \quad (3) \] - Término independiente: \[ A - B - D = 1 \quad (4) \] 7. Resolución del sistema de ecuaciones: Del (3): \[ A + B - C = 0 \quad \Longrightarrow \quad C = A + B \] Sustituyendo \(C = A + B\) en (1): \[ A + B + (A + B) = 0 \quad \Longrightarrow \quad 2(A + B) = 0 \quad \Longrightarrow \quad A + B = 0 \] Esto implica: \[ B = -A \quad \text{y por tanto} \quad C = 0 \] Utilizamos (2): \[ A - (-A) + D = 0 \quad \Longrightarrow \quad 2A + D = 0 \quad \Longrightarrow \quad D = -2A \] Ahora, usamos (4): \[ A - (-A) - D = 1 \quad \Longrightarrow \quad 2A - D = 1 \] Sustituimos \(D = -2A\): \[ 2A - (-2A) = 1 \quad \Longrightarrow \quad 4A = 1 \quad \Longrightarrow \quad A = \frac{1}{4} \] De donde: \[ B = -\frac{1}{4}, \quad C = 0, \quad D = -2\left(\frac{1}{4}\right) = -\frac{1}{2} \] 8. Por lo tanto, la descomposición es: \[ \frac{1}{x^4-1} = \frac{1/4}{x-1} - \frac{1/4}{x+1} - \frac{1/2}{x^2+1} \] La respuesta final es: \[ \boxed{\frac{1}{x^4-1} = \frac{1}{4(x-1)} - \frac{1}{4(x+1)} - \frac{1}{2(x^2+1)}} \]

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Beyond the Answer

To understand \( \frac{1}{x^{4}-1} \), we can start by factoring the denominator. The expression \( x^4 - 1 \) can be factored using the difference of squares: \[ x^4 - 1 = (x^2 - 1)(x^2 + 1) \] The factor \( x^2 - 1 \) can be further factored as \( (x - 1)(x + 1) \). So, we get: \[ x^4 - 1 = (x - 1)(x + 1)(x^2 + 1) \] This means our original expression can be rewritten as: \[ \frac{1}{(x - 1)(x + 1)(x^2 + 1)} \] Now, this decomposition helps show singularities and simplifies analysis in calculus or partial fraction decomposition! Additionally, in real-world applications, understanding the behavior of this function is crucial in fields like physics and engineering when analyzing forces and vibrations in systems. These factors can represent poles in a control system where stability and resonance frequencies are studied, demonstrating the blend of mathematics with real-world phenomena!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy