Question
upstudy study bank question image url

4. Evaluate \( \iint_{R}\left(x^{2}-x y+y^{2}\right) d A \), where \( R \) is the region bounded by the ellipse \( x^{2}-x y+y^{2}=2 \) by using the transformation \( x=\sqrt{2} u-\sqrt{2 / 3} v, \quad y=\sqrt{2} u+\sqrt{2 / 3} v \)

Ask by Bernard Vega. in the United States
Mar 31,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

The value of the integral is \( \frac{4\pi}{\sqrt{3}} \).

Solution

We start with the integral \[ I=\iint_{R}\left(x^{2}-xy+y^{2}\right)\,dA, \] where \( R \) is the region bounded by the ellipse \[ x^{2}-xy+y^{2}= 2. \] A transformation is given by \[ x=\sqrt{2}\,u-\sqrt{\frac{2}{3}}\,v,\quad y=\sqrt{2}\,u+\sqrt{\frac{2}{3}}\,v. \] We'll follow these steps: --- **1. Expressing the Quadratic Form in \((u,v)\):** Define \[ A=\sqrt{2}\,u \quad \text{and} \quad B=\sqrt{\frac{2}{3}}\,v. \] Then \[ x=A-B,\quad y=A+B. \] Compute \[ \begin{aligned} x^2 &= (A-B)^2 = A^2-2AB+B^2,\\[1mm] y^2 &= (A+B)^2 = A^2+2AB+B^2,\\[1mm] xy &= (A-B)(A+B)= A^2-B^2. \end{aligned} \] Substitute these into the quadratic form: \[ \begin{aligned} x^2-xy+y^2 &= \Bigl[A^2-2AB+B^2\Bigr] - \Bigl[A^2-B^2\Bigr] + \Bigl[A^2+2AB+B^2\Bigr]\\[1mm] &= \left(A^2-2AB+B^2 -A^2+B^2+A^2+2AB+B^2\right)\\[1mm] &= A^2 + 3B^2. \end{aligned} \] Recall that \[ A^2 = 2u^2 \quad \text{and} \quad B^2=\frac{2}{3}v^2. \] Thus, \[ x^2-xy+y^2 = 2u^2+ 3\left(\frac{2}{3}v^2\right)= 2u^2+2v^2= 2\left(u^2+v^2\right). \] --- **2. Transforming the Region:** The original region is defined by \[ x^2-xy+y^2=2. \] Using the new variables, this becomes \[ 2\left(u^2+v^2\right)=2 \quad \Longrightarrow \quad u^2+v^2=1. \] Thus the region transforms into the unit disk in the \((u,v)\)-plane. --- **3. Computing the Jacobian:** The transformation is \[ x=\sqrt{2}\,u-\sqrt{\frac{2}{3}}\,v,\quad y=\sqrt{2}\,u+\sqrt{\frac{2}{3}}\,v. \] The Jacobian matrix is \[ J=\begin{pmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v}\\[1mm] \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{pmatrix}= \begin{pmatrix} \sqrt{2} & -\sqrt{\frac{2}{3}}\\[1mm] \sqrt{2} & \sqrt{\frac{2}{3}} \end{pmatrix}. \] Its determinant is \[ \begin{aligned} \det(J)&=\sqrt{2}\cdot\sqrt{\frac{2}{3}} - \left(-\sqrt{\frac{2}{3}}\cdot\sqrt{2}\right)\\[1mm] &=\sqrt{2}\sqrt{\frac{2}{3}}+\sqrt{2}\sqrt{\frac{2}{3}} =2\sqrt{2}\sqrt{\frac{2}{3}}. \end{aligned} \] Since \[ \sqrt{2}\sqrt{\frac{2}{3}}=\sqrt{\frac{4}{3}}=\frac{2}{\sqrt{3}}, \] the determinant becomes \[ \det(J)=2\cdot\frac{2}{\sqrt{3}}=\frac{4}{\sqrt{3}}. \] Thus, the area element transforms as \[ dA = \left|\det(J)\right|\,du\,dv=\frac{4}{\sqrt{3}}\,du\,dv. \] --- **4. Rewriting the Integral:** The integrand becomes \[ x^2-xy+y^2=2\left(u^2+v^2\right), \] so the integral is \[ \begin{aligned} I &=\iint_{R} \left(x^2-xy+y^2\right)\,dA\\[1mm] &=\iint_{u^2+v^2\le 1} 2\left(u^2+v^2\right)\cdot\frac{4}{\sqrt{3}}\,du\,dv\\[1mm] &=\frac{8}{\sqrt{3}} \iint_{u^2+v^2\le 1}\left(u^2+v^2\right)\,du\,dv. \end{aligned} \] --- **5. Converting to Polar Coordinates:** Let \[ u=r\cos\theta,\quad v=r\sin\theta, \] with \(r\in [0,1]\) and \(\theta\in [0,2\pi]\). The area element becomes \(du\,dv = r\,dr\,d\theta\) and \[ u^2+v^2=r^2. \] Thus the integral becomes \[ \begin{aligned} I &=\frac{8}{\sqrt{3}} \int_{0}^{2\pi}\int_{0}^{1} r^2\cdot r\,dr\,d\theta\\[1mm] &=\frac{8}{\sqrt{3}}\int_{0}^{2\pi}\int_{0}^{1} r^3\,dr\,d\theta. \end{aligned} \] Evaluate the \(r\)-integral: \[ \int_{0}^{1} r^3\,dr=\left.\frac{r^4}{4}\right|_{0}^{1}=\frac{1}{4}. \] Then the \(\theta\)-integral: \[ \int_{0}^{2\pi} d\theta=2\pi. \] So we have \[ I=\frac{8}{\sqrt{3}}\cdot\frac{1}{4}\cdot2\pi = \frac{8\cdot2\pi}{4\sqrt{3}} = \frac{16\pi}{4\sqrt{3}} = \frac{4\pi}{\sqrt{3}}. \] --- **Final Answer:** \[ \boxed{\frac{4\pi}{\sqrt{3}}} \]

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

The Deep Dive

To evaluate the integral \( \iint_{R}\left(x^{2}-x y+y^{2}\right) d A \) over the region bounded by the ellipse \( x^{2}-x y+y^{2}=2 \) using the transformation \( x=\sqrt{2} u-\sqrt{2 / 3} v \) and \( y=\sqrt{2} u+\sqrt{2 / 3} v \), we will follow these steps: 1. **Change of Variables:** The transformation is given by \( x = \sqrt{2} u - \sqrt{2/3} v \) and \( y = \sqrt{2} u + \sqrt{2/3} v \). We need to express \( x^2 - xy + y^2 \) in terms of \( u \) and \( v \). 2. **Jacobian Determinant:** First, we compute the Jacobian determinant for the transformation to transform the area element \( dA \). \[ \frac{\partial(x, y)}{\partial(u, v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} = \begin{vmatrix} \sqrt{2} & -\sqrt{2/3} \\ \sqrt{2} & \sqrt{2/3} \end{vmatrix} = \sqrt{2} \cdot \sqrt{2/3} + \sqrt{2} \cdot \sqrt{2/3} = \frac{4}{\sqrt{3}}. \] The absolute value of the determinant is \( \left| J \right| = \sqrt{\frac{8}{3}} \). 3. **Transform the Region:** The equation of the ellipse in the transformed coordinates \( (u, v) \) becomes simpler. You would substitute the expressions for \( x \) and \( y \) into the equation of the ellipse to describe the region \( R \). 4. **Integrate in New Coordinates:** Now, change the integral bounds accordingly and evaluate the integral. The region \( R \) will often change to a simpler bounded shape after transformation; for example, it might become a circle or rectangle. 5. **Final Evaluation:** Substitute the transformed function \( x^2 - xy + y^2 \) into the integral, multiply by the Jacobian, and integrate over the new area defined by \( u \) and \( v \). This method will yield your desired double integral solution over the region defined by the original ellipse.

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy