Question
upstudy study bank question image url

\( \sqrt[3]{7}=7^{\frac{1}{3}} \) A. \( \left(7^{\frac{1}{3}}\right)^{3}=7^{\frac{1}{3}} \cdot 7^{\frac{1}{3}} \cdot 7^{\frac{1}{3}}=7 \cdot\left(\frac{1}{3}+\frac{1}{3}+\frac{1}{3}\right)=7 \cdot \frac{3}{3}=7 \cdot 1=7 \) B. \( \left(7^{\frac{1}{3}}\right)^{3}=7^{\frac{1}{3}} \cdot 7^{\frac{1}{3}} \cdot 7^{\frac{1}{3}}=7 \cdot 7^{\frac{1}{3}}=3 \cdot \frac{1}{3} \cdot 7=1 \cdot 7=7 \) C. \( \left(7^{\frac{1}{3}}\right)^{3}=7^{\frac{1}{3}} \cdot 7^{\frac{1}{3}} \cdot 7^{\frac{1}{3}}=7^{\frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3}}=7^{\frac{3}{3}}=7^{1}=7 \) D. \( \left(7^{\frac{1}{3}}\right)^{3}=7^{\frac{1}{3}} \cdot 7^{\frac{1}{3}} \cdot 7^{\frac{1}{3}}=7^{\frac{1}{3}+\frac{1}{3}+\frac{1}{3}}=7^{\frac{3}{3}}=7^{1}=7 \)

Ask by Chavez Murphy. in the United States
Jan 24,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The correct answers are options A and D, which correctly show that \( \left(7^{\frac{1}{3}}\right)^{3} = 7 \).

Solution

Let's analyze each option step by step to determine if they correctly demonstrate that \( \left(7^{\frac{1}{3}}\right)^{3} = 7 \). ### A. \[ \left(7^{\frac{1}{3}}\right)^{3} = 7^{\frac{1}{3}} \cdot 7^{\frac{1}{3}} \cdot 7^{\frac{1}{3}} = 7 \cdot \left(\frac{1}{3}+\frac{1}{3}+\frac{1}{3}\right) = 7 \cdot \frac{3}{3} = 7 \cdot 1 = 7 \] - This option correctly shows that \( \left(7^{\frac{1}{3}}\right)^{3} = 7 \) using the property of exponents. ### B. \[ \left(7^{\frac{1}{3}}\right)^{3} = 7^{\frac{1}{3}} \cdot 7^{\frac{1}{3}} \cdot 7^{\frac{1}{3}} = 7 \cdot 7^{\frac{1}{3}} = 3 \cdot \frac{1}{3} \cdot 7 = 1 \cdot 7 = 7 \] - This option contains an error in the step \( 7 \cdot 7^{\frac{1}{3}} \). It should not equal \( 3 \cdot \frac{1}{3} \cdot 7 \). Therefore, this option is incorrect. ### C. \[ \left(7^{\frac{1}{3}}\right)^{3} = 7^{\frac{1}{3}} \cdot 7^{\frac{1}{3}} \cdot 7^{\frac{1}{3}} = 7^{\frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3}} = 7^{\frac{3}{3}} = 7^{1} = 7 \] - This option incorrectly states \( 7^{\frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3}} \) as it should be \( 7^{\frac{1}{3} + \frac{1}{3} + \frac{1}{3}} \). Thus, this option is incorrect. ### D. \[ \left(7^{\frac{1}{3}}\right)^{3} = 7^{\frac{1}{3}} \cdot 7^{\frac{1}{3}} \cdot 7^{\frac{1}{3}} = 7^{\frac{1}{3}+\frac{1}{3}+\frac{1}{3}} = 7^{\frac{3}{3}} = 7^{1} = 7 \] - This option correctly uses the property of exponents to show that \( \left(7^{\frac{1}{3}}\right)^{3} = 7 \). ### Conclusion: The correct options that demonstrate \( \left(7^{\frac{1}{3}}\right)^{3} = 7 \) are **A** and **D**. Options **B** and **C** contain errors in their calculations.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

The Deep Dive

Let's travel back in time! Cube roots have been around for centuries, dating back to ancient civilizations, where mathematicians like the Babylonians devised methods to approximate values of cube roots. They laid the groundwork that would lead to our modern understanding of exponents and roots, using a blend of practical problem-solving and geometric intuitions. Imagine how mind-blowing it must have been for those early thinkers to realize that one number could be expressed in so many different, yet connected, ways! Now let’s apply our knowledge! Understanding cube roots can be incredibly useful in various fields, including computer graphics, physics, and even finance when dealing with exponential growth or decay. A practical approach is to remember \( a^{m/n} \) and use it to simplify calculations involving roots and exponents. By recognizing patterns in these expressions, you can quickly simplify complex problems and avoid common pitfalls like misapplying the properties of exponents. So next time you see a cube root, think of all the real-world applications it could relate to!

Related Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy