Pregunta
upstudy study bank question image url

\( \sqrt[3]{7}=7^{\frac{1}{3}} \) A. \( \left(7^{\frac{1}{3}}\right)^{3}=7^{\frac{1}{3}} \cdot 7^{\frac{1}{3}} \cdot 7^{\frac{1}{3}}=7 \cdot\left(\frac{1}{3}+\frac{1}{3}+\frac{1}{3}\right)=7 \cdot \frac{3}{3}=7 \cdot 1=7 \) B. \( \left(7^{\frac{1}{3}}\right)^{3}=7^{\frac{1}{3}} \cdot 7^{\frac{1}{3}} \cdot 7^{\frac{1}{3}}=7 \cdot 7^{\frac{1}{3}}=3 \cdot \frac{1}{3} \cdot 7=1 \cdot 7=7 \) C. \( \left(7^{\frac{1}{3}}\right)^{3}=7^{\frac{1}{3}} \cdot 7^{\frac{1}{3}} \cdot 7^{\frac{1}{3}}=7^{\frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3}}=7^{\frac{3}{3}}=7^{1}=7 \) D. \( \left(7^{\frac{1}{3}}\right)^{3}=7^{\frac{1}{3}} \cdot 7^{\frac{1}{3}} \cdot 7^{\frac{1}{3}}=7^{\frac{1}{3}+\frac{1}{3}+\frac{1}{3}}=7^{\frac{3}{3}}=7^{1}=7 \)

Ask by Chavez Murphy. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The correct answers are options A and D, which correctly show that \( \left(7^{\frac{1}{3}}\right)^{3} = 7 \).

Solución

Let's analyze each option step by step to determine if they correctly demonstrate that \( \left(7^{\frac{1}{3}}\right)^{3} = 7 \). ### A. \[ \left(7^{\frac{1}{3}}\right)^{3} = 7^{\frac{1}{3}} \cdot 7^{\frac{1}{3}} \cdot 7^{\frac{1}{3}} = 7 \cdot \left(\frac{1}{3}+\frac{1}{3}+\frac{1}{3}\right) = 7 \cdot \frac{3}{3} = 7 \cdot 1 = 7 \] - This option correctly shows that \( \left(7^{\frac{1}{3}}\right)^{3} = 7 \) using the property of exponents. ### B. \[ \left(7^{\frac{1}{3}}\right)^{3} = 7^{\frac{1}{3}} \cdot 7^{\frac{1}{3}} \cdot 7^{\frac{1}{3}} = 7 \cdot 7^{\frac{1}{3}} = 3 \cdot \frac{1}{3} \cdot 7 = 1 \cdot 7 = 7 \] - This option contains an error in the step \( 7 \cdot 7^{\frac{1}{3}} \). It should not equal \( 3 \cdot \frac{1}{3} \cdot 7 \). Therefore, this option is incorrect. ### C. \[ \left(7^{\frac{1}{3}}\right)^{3} = 7^{\frac{1}{3}} \cdot 7^{\frac{1}{3}} \cdot 7^{\frac{1}{3}} = 7^{\frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3}} = 7^{\frac{3}{3}} = 7^{1} = 7 \] - This option incorrectly states \( 7^{\frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3}} \) as it should be \( 7^{\frac{1}{3} + \frac{1}{3} + \frac{1}{3}} \). Thus, this option is incorrect. ### D. \[ \left(7^{\frac{1}{3}}\right)^{3} = 7^{\frac{1}{3}} \cdot 7^{\frac{1}{3}} \cdot 7^{\frac{1}{3}} = 7^{\frac{1}{3}+\frac{1}{3}+\frac{1}{3}} = 7^{\frac{3}{3}} = 7^{1} = 7 \] - This option correctly uses the property of exponents to show that \( \left(7^{\frac{1}{3}}\right)^{3} = 7 \). ### Conclusion: The correct options that demonstrate \( \left(7^{\frac{1}{3}}\right)^{3} = 7 \) are **A** and **D**. Options **B** and **C** contain errors in their calculations.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

Let's travel back in time! Cube roots have been around for centuries, dating back to ancient civilizations, where mathematicians like the Babylonians devised methods to approximate values of cube roots. They laid the groundwork that would lead to our modern understanding of exponents and roots, using a blend of practical problem-solving and geometric intuitions. Imagine how mind-blowing it must have been for those early thinkers to realize that one number could be expressed in so many different, yet connected, ways! Now let’s apply our knowledge! Understanding cube roots can be incredibly useful in various fields, including computer graphics, physics, and even finance when dealing with exponential growth or decay. A practical approach is to remember \( a^{m/n} \) and use it to simplify calculations involving roots and exponents. By recognizing patterns in these expressions, you can quickly simplify complex problems and avoid common pitfalls like misapplying the properties of exponents. So next time you see a cube root, think of all the real-world applications it could relate to!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad