Question
upstudy study bank question image url

Which is equivalent to \( (\sqrt[3]{125})^{x} \) ? \( 125^{\frac{1}{3} x} \) \( 125^{\frac{1}{3 x}} \) \( 125^{3 x} \) \( 1255^{\left[\frac{1}{3}\right)^{x}} \)

Ask by Gray Harper. in the United States
Feb 03,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

\( 125^{\frac{1}{3} x} \)

Solution

The expression \( (\sqrt[3]{125})^{x} \) can be simplified step by step to find its equivalent form among the provided options. 1. **Simplify the Cube Root:** \[ \sqrt[3]{125} = 5 \] This is because \( 125 = 5^3 \). 2. **Raise to the Power of \( x \):** \[ (\sqrt[3]{125})^{x} = 5^{x} \] Now, let's evaluate each of the given options to see which one matches \( 5^{x} \): 1. **Option 1: \( 125^{\frac{1}{3} x} \)** \[ 125^{\frac{1}{3} x} = (5^3)^{\frac{1}{3} x} = 5^{3 \cdot \frac{1}{3} x} = 5^{x} \] This matches exactly with \( (\sqrt[3]{125})^{x} \). 2. **Option 2: \( 125^{\frac{1}{3 x}} \)** \[ 125^{\frac{1}{3 x}} = (5^3)^{\frac{1}{3 x}} = 5^{\frac{3}{3 x}} = 5^{\frac{1}{x}} \] This does not match \( 5^{x} \). 3. **Option 3: \( 125^{3 x} \)** \[ 125^{3 x} = (5^3)^{3 x} = 5^{9 x} \] This does not match \( 5^{x} \). 4. **Option 4: \( 1255^{\left(\frac{1}{3}\right)^{x}} \)** Assuming it's a typographical error and should be \( 125^{\left(\frac{1}{3}\right)^{x}} \): \[ 125^{\left(\frac{1}{3}\right)^{x}} = (5^3)^{\left(\frac{1}{3}\right)^{x}} = 5^{3 \left(\frac{1}{3}\right)^{x}} \] This does not match \( 5^{x} \). **Conclusion:** The equivalent expression to \( (\sqrt[3]{125})^{x} \) is: **\( 125^{\frac{1}{3} x} \)** **Answer:** \( 125^{\frac{1}{3} x} \)

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Bonus Knowledge

To find the expression equivalent to \( (\sqrt[3]{125})^{x} \), we start by rewriting \( \sqrt[3]{125} \) in exponential form. We know that \( \sqrt[3]{125} = 125^{\frac{1}{3}} \). Thus, we can rewrite the original expression as: \[ (\sqrt[3]{125})^{x} = \left(125^{\frac{1}{3}}\right)^{x} \] Applying the power of a power property (which states that \( (a^{m})^{n} = a^{m \cdot n} \)), we have: \[ (125^{\frac{1}{3}})^{x} = 125^{\frac{1}{3} x} \] Therefore, the correct choice is: \( 125^{\frac{1}{3} x} \)

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy