Question
upstudy study bank question image url

()) If \( \lim _{x \rightarrow-5} f(x)^{\cdot}=-3 \) and \( \lim _{x \rightarrow-5} g(x)=-10 \), what is \( \lim _{x \rightarrow-5}\left([f(x)]^{2} g(x)\right) \) ?

Ask by Knight Reeves. in the United States
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The limit is -90.

Solution

To find the limit \( \lim _{x \rightarrow-5}\left([f(x)]^{2} g(x)\right) \), we can use the properties of limits. Given: 1. \( \lim _{x \rightarrow-5} f(x) = -3 \) 2. \( \lim _{x \rightarrow-5} g(x) = -10 \) We can calculate the limit step by step: 1. **Calculate \( \lim _{x \rightarrow-5} [f(x)]^{2} \)**: \[ \lim _{x \rightarrow-5} [f(x)]^{2} = \left( \lim _{x \rightarrow-5} f(x) \right)^{2} = (-3)^{2} = 9 \] 2. **Use the limit of \( g(x) \)**: \[ \lim _{x \rightarrow-5} g(x) = -10 \] 3. **Combine the limits**: \[ \lim _{x \rightarrow-5} \left([f(x)]^{2} g(x)\right) = \lim _{x \rightarrow-5} [f(x)]^{2} \cdot \lim _{x \rightarrow-5} g(x) = 9 \cdot (-10) = -90 \] Thus, the final result is: \[ \lim _{x \rightarrow-5}\left([f(x)]^{2} g(x)\right) = -90 \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Bonus Knowledge

To find the limit \( \lim _{x \rightarrow -5} \left([f(x)]^{2} g(x)\right) \), we can utilize the properties of limits. Given that \( \lim _{x \rightarrow -5} f(x) = -3 \) and \( \lim _{x \rightarrow -5} g(x) = -10 \), we can compute the limit of the expression: 1. First, calculate \( \lim _{x \rightarrow -5} [f(x)]^2 \): \[ \lim _{x \rightarrow -5} [f(x)]^2 = \left(\lim _{x \rightarrow -5} f(x)\right)^{2} = (-3)^{2} = 9. \] 2. Next, we have \( \lim _{x \rightarrow -5} g(x) = -10 \). 3. Now, we can combine these results: \[ \lim _{x \rightarrow -5} \left([f(x)]^{2} g(x)\right) = \lim _{x \rightarrow -5} [f(x)]^2 \cdot \lim _{x \rightarrow -5} g(x) = 9 \cdot (-10) = -90. \] Thus, the final result is: \[ \lim _{x \rightarrow -5} \left([f(x)]^{2} g(x)\right) = -90. \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy