Question
upstudy study bank question image url

1. Encuentra la antiderivada de las siguientes funciones aplicando la regla indicada. 1. \( f(x)=x^{9} \) 2. \( f(x)=2 x^{2 / 3}-5 x^{3} \) 3. \( f(x)=-3 x^{-4}+10 x^{2 / 3}-7 x \) 4. \( f(x)=\frac{x}{2}-4 x^{3}-x^{4} \) 5. \( f(x)=3 x+8 x^{3}+x^{-3}+5 x^{2} \) 6. \( f(x)=9 x^{4 / 5}+x-\frac{2}{x^{3}}-\sqrt{x} \) 7. \( f(x)=\frac{x^{3}}{2}-3 x^{-2}-2 x^{3}-x^{3 / 2} \) 8. \( f(x)=2 x^{3}-4 x^{2}+2 x \); considere que \( F(0)=15 \) 9. \( g(x)=x^{2}+2 x-1 ; \) considereque \( G(1)=7 \) 10. \( f(x)=x^{3}-3 x^{2}+6 x \); considere que \( F(-1)=3 \)

Ask by Turner Simmons. in Mexico
Jan 26,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Here are the antiderivatives of the given functions: 1. \( F(x) = \frac{x^{10}}{10} + C \) 2. \( F(x) = \frac{6}{5}x\sqrt[3]{x^{2}} - \frac{5x^{4}}{4} + C \) 3. \( F(x) = \frac{1}{x^{3}} + 6x\sqrt[3]{x^{2}} - \frac{7x^{2}}{2} + C \) 4. \( F(x) = \frac{x^{2}}{4} - x^{4} - \frac{x^{5}}{5} + C \) 5. \( F(x) = \frac{3x^{2}}{2} + 2x^{4} - \frac{1}{2x^{2}} + \frac{5x^{3}}{3} + C \) 6. \( F(x) = 5x\sqrt[5]{x^{4}} + \frac{x^{2}}{2} + \frac{1}{x^{2}} - \frac{2}{3}x\sqrt{x} + C \) 7. \( F(x) = \frac{x^{4}}{8} + \frac{3}{x} - \frac{x^{4}}{2} - \frac{2}{5}x^{2}\sqrt{x} + C \) 8. \( F(x) = \frac{x^{4}}{2} - \frac{4x^{3}}{3} + x^{2} + C \) (with \( C \) determined using \( F(0) = 15 \)) 9. \( G(x) = \frac{x^{3}}{3} + x^{2} - x + C \) (with \( C \) determined using \( G(1) = 7 \)) 10. \( F(x) = \frac{x^{4}}{4} - x^{3} + 3x^{2} + C \) (with \( C \) determined using \( F(-1) = 3 \)) If you need the values of \( C \) for cases 8, 9, and 10, let me know.

Solution

Evaluate the integral by following steps: - step0: Evaluate using formulas and rules: \(\int x^{9} dx\) - step1: Evaluate the integral: \(\frac{x^{9+1}}{9+1}\) - step2: Add the numbers: \(\frac{x^{10}}{9+1}\) - step3: Add the numbers: \(\frac{x^{10}}{10}\) - step4: Add the constant of integral C: \(\frac{x^{10}}{10} + C, C \in \mathbb{R}\) Calculate the integral \( x^{2}+2 x-1 \). Evaluate the integral by following steps: - step0: Evaluate using formulas and rules: \(\int \left(x^{2}+2x-1\right) dx\) - step1: Use properties of integrals: \(\int x^{2} dx+\int 2x dx+\int -1 dx\) - step2: Evaluate the integral: \(\frac{x^{3}}{3}+\int 2x dx+\int -1 dx\) - step3: Evaluate the integral: \(\frac{x^{3}}{3}+x^{2}+\int -1 dx\) - step4: Evaluate the integral: \(\frac{x^{3}}{3}+x^{2}-x\) - step5: Add the constant of integral C: \(\frac{x^{3}}{3}+x^{2}-x + C, C \in \mathbb{R}\) Calculate the integral \( x^{3}-3 x^{2}+6 x \). Evaluate the integral by following steps: - step0: Evaluate using formulas and rules: \(\int \left(x^{3}-3x^{2}+6x\right) dx\) - step1: Use properties of integrals: \(\int x^{3} dx+\int -3x^{2} dx+\int 6x dx\) - step2: Evaluate the integral: \(\frac{x^{4}}{4}+\int -3x^{2} dx+\int 6x dx\) - step3: Evaluate the integral: \(\frac{x^{4}}{4}-x^{3}+\int 6x dx\) - step4: Evaluate the integral: \(\frac{x^{4}}{4}-x^{3}+3x^{2}\) - step5: Add the constant of integral C: \(\frac{x^{4}}{4}-x^{3}+3x^{2} + C, C \in \mathbb{R}\) Calculate the integral \( 2 x^{3}-4 x^{2}+2 x \). Evaluate the integral by following steps: - step0: Evaluate using formulas and rules: \(\int \left(2x^{3}-4x^{2}+2x\right) dx\) - step1: Use properties of integrals: \(\int 2x^{3} dx+\int -4x^{2} dx+\int 2x dx\) - step2: Evaluate the integral: \(\frac{x^{4}}{2}+\int -4x^{2} dx+\int 2x dx\) - step3: Evaluate the integral: \(\frac{x^{4}}{2}-\frac{4x^{3}}{3}+\int 2x dx\) - step4: Evaluate the integral: \(\frac{x^{4}}{2}-\frac{4x^{3}}{3}+x^{2}\) - step5: Add the constant of integral C: \(\frac{x^{4}}{2}-\frac{4x^{3}}{3}+x^{2} + C, C \in \mathbb{R}\) Calculate the integral \( \frac{x}{2}-4 x^{3}-x^{4} \). Evaluate the integral by following steps: - step0: Evaluate using formulas and rules: \(\int \left(\frac{x}{2}-4x^{3}-x^{4}\right) dx\) - step1: Use properties of integrals: \(\int \frac{x}{2} dx+\int -4x^{3} dx+\int -x^{4} dx\) - step2: Evaluate the integral: \(\frac{x^{2}}{4}+\int -4x^{3} dx+\int -x^{4} dx\) - step3: Evaluate the integral: \(\frac{x^{2}}{4}-x^{4}+\int -x^{4} dx\) - step4: Evaluate the integral: \(\frac{x^{2}}{4}-x^{4}-\frac{x^{5}}{5}\) - step5: Add the constant of integral C: \(\frac{x^{2}}{4}-x^{4}-\frac{x^{5}}{5} + C, C \in \mathbb{R}\) Calculate the integral \( 2 x^{2 / 3}-5 x^{3} \). Evaluate the integral by following steps: - step0: Evaluate using formulas and rules: \(\int \left(2x^{\frac{2}{3}}-5x^{3}\right) dx\) - step1: Use properties of integrals: \(\int 2x^{\frac{2}{3}} dx+\int -5x^{3} dx\) - step2: Evaluate the integral: \(\frac{6}{5}x^{\frac{5}{3}}+\int -5x^{3} dx\) - step3: Evaluate the integral: \(\frac{6}{5}x^{\frac{5}{3}}-\frac{5x^{4}}{4}\) - step4: Simplify: \(\frac{6}{5}x\sqrt[3]{x^{2}}-\frac{5x^{4}}{4}\) - step5: Add the constant of integral C: \(\frac{6}{5}x\sqrt[3]{x^{2}}-\frac{5x^{4}}{4} + C, C \in \mathbb{R}\) Calculate the integral \( 3 x+8 x^{3}+x^{-3}+5 x^{2} \). Evaluate the integral by following steps: - step0: Evaluate using formulas and rules: \(\int \left(3x+8x^{3}+x^{-3}+5x^{2}\right) dx\) - step1: Use properties of integrals: \(\int 3x dx+\int 8x^{3} dx+\int x^{-3} dx+\int 5x^{2} dx\) - step2: Evaluate the integral: \(\frac{3x^{2}}{2}+\int 8x^{3} dx+\int x^{-3} dx+\int 5x^{2} dx\) - step3: Evaluate the integral: \(\frac{3x^{2}}{2}+2x^{4}+\int x^{-3} dx+\int 5x^{2} dx\) - step4: Evaluate the integral: \(\frac{3x^{2}}{2}+2x^{4}-\frac{1}{2x^{2}}+\int 5x^{2} dx\) - step5: Evaluate the integral: \(\frac{3x^{2}}{2}+2x^{4}-\frac{1}{2x^{2}}+\frac{5x^{3}}{3}\) - step6: Add the constant of integral C: \(\frac{3x^{2}}{2}+2x^{4}-\frac{1}{2x^{2}}+\frac{5x^{3}}{3} + C, C \in \mathbb{R}\) Calculate the integral \( -3 x^{-4}+10 x^{2 / 3}-7 x \). Evaluate the integral by following steps: - step0: Evaluate using formulas and rules: \(\int \left(-3x^{-4}+10x^{\frac{2}{3}}-7x\right) dx\) - step1: Use properties of integrals: \(\int -3x^{-4} dx+\int 10x^{\frac{2}{3}} dx+\int -7x dx\) - step2: Evaluate the integral: \(\frac{1}{x^{3}}+\int 10x^{\frac{2}{3}} dx+\int -7x dx\) - step3: Evaluate the integral: \(\frac{1}{x^{3}}+6x^{\frac{5}{3}}+\int -7x dx\) - step4: Evaluate the integral: \(\frac{1}{x^{3}}+6x^{\frac{5}{3}}-\frac{7x^{2}}{2}\) - step5: Simplify: \(\frac{1}{x^{3}}+6x\sqrt[3]{x^{2}}-\frac{7x^{2}}{2}\) - step6: Add the constant of integral C: \(\frac{1}{x^{3}}+6x\sqrt[3]{x^{2}}-\frac{7x^{2}}{2} + C, C \in \mathbb{R}\) Calculate the integral \( \frac{x^{3}}{2}-3 x^{-2}-2 x^{3}-x^{3 / 2} \). Evaluate the integral by following steps: - step0: Evaluate using formulas and rules: \(\int \left(\frac{x^{3}}{2}-3x^{-2}-2x^{3}-x^{\frac{3}{2}}\right) dx\) - step1: Use properties of integrals: \(\int \frac{x^{3}}{2} dx+\int -3x^{-2} dx+\int -2x^{3} dx+\int -x^{\frac{3}{2}} dx\) - step2: Evaluate the integral: \(\frac{x^{4}}{8}+\int -3x^{-2} dx+\int -2x^{3} dx+\int -x^{\frac{3}{2}} dx\) - step3: Evaluate the integral: \(\frac{x^{4}}{8}+\frac{3}{x}+\int -2x^{3} dx+\int -x^{\frac{3}{2}} dx\) - step4: Evaluate the integral: \(\frac{x^{4}}{8}+\frac{3}{x}-\frac{x^{4}}{2}+\int -x^{\frac{3}{2}} dx\) - step5: Evaluate the integral: \(\frac{x^{4}}{8}+\frac{3}{x}-\frac{x^{4}}{2}-\frac{2}{5}x^{\frac{5}{2}}\) - step6: Simplify: \(\frac{x^{4}}{8}+\frac{3}{x}-\frac{x^{4}}{2}-\frac{2}{5}x^{2}\sqrt{x}\) - step7: Add the constant of integral C: \(\frac{x^{4}}{8}+\frac{3}{x}-\frac{x^{4}}{2}-\frac{2}{5}x^{2}\sqrt{x} + C, C \in \mathbb{R}\) Calculate the integral \( 9 x^{4 / 5}+x-\frac{2}{x^{3}}-\sqrt{x} \). Evaluate the integral by following steps: - step0: Evaluate using formulas and rules: \(\int \left(9x^{\frac{4}{5}}+x-\frac{2}{x^{3}}-\sqrt{x}\right) dx\) - step1: Use properties of integrals: \(\int 9x^{\frac{4}{5}} dx+\int x dx+\int -\frac{2}{x^{3}} dx+\int -\sqrt{x} dx\) - step2: Evaluate the integral: \(5x^{\frac{9}{5}}+\int x dx+\int -\frac{2}{x^{3}} dx+\int -\sqrt{x} dx\) - step3: Evaluate the integral: \(5x^{\frac{9}{5}}+\frac{x^{2}}{2}+\int -\frac{2}{x^{3}} dx+\int -\sqrt{x} dx\) - step4: Evaluate the integral: \(5x^{\frac{9}{5}}+\frac{x^{2}}{2}+\frac{1}{x^{2}}+\int -\sqrt{x} dx\) - step5: Evaluate the integral: \(5x^{\frac{9}{5}}+\frac{x^{2}}{2}+\frac{1}{x^{2}}-\frac{2}{3}x^{\frac{3}{2}}\) - step6: Simplify: \(5x\sqrt[5]{x^{4}}+\frac{x^{2}}{2}+\frac{1}{x^{2}}-\frac{2}{3}x^{\frac{3}{2}}\) - step7: Simplify: \(5x\sqrt[5]{x^{4}}+\frac{x^{2}}{2}+\frac{1}{x^{2}}-\frac{2}{3}x\sqrt{x}\) - step8: Add the constant of integral C: \(5x\sqrt[5]{x^{4}}+\frac{x^{2}}{2}+\frac{1}{x^{2}}-\frac{2}{3}x\sqrt{x} + C, C \in \mathbb{R}\) Aquí están las antiderivadas de las funciones dadas: 1. Para \( f(x) = x^{9} \): \[ F(x) = \frac{x^{10}}{10} + C, \quad C \in \mathbb{R} \] 2. Para \( f(x) = 2 x^{2/3} - 5 x^{3} \): \[ F(x) = \frac{6}{5}x\sqrt[3]{x^{2}} - \frac{5x^{4}}{4} + C, \quad C \in \mathbb{R} \] 3. Para \( f(x) = -3 x^{-4} + 10 x^{2/3} - 7 x \): \[ F(x) = \frac{1}{x^{3}} + 6x\sqrt[3]{x^{2}} - \frac{7x^{2}}{2} + C, \quad C \in \mathbb{R} \] 4. Para \( f(x) = \frac{x}{2} - 4 x^{3} - x^{4} \): \[ F(x) = \frac{x^{2}}{4} - x^{4} - \frac{x^{5}}{5} + C, \quad C \in \mathbb{R} \] 5. Para \( f(x) = 3 x + 8 x^{3} + x^{-3} + 5 x^{2} \): \[ F(x) = \frac{3x^{2}}{2} + 2x^{4} - \frac{1}{2x^{2}} + \frac{5x^{3}}{3} + C, \quad C \in \mathbb{R} \] 6. Para \( f(x) = 9 x^{4/5} + x - \frac{2}{x^{3}} - \sqrt{x} \): \[ F(x) = 5x\sqrt[5]{x^{4}} + \frac{x^{2}}{2} + \frac{1}{x^{2}} - \frac{2}{3}x\sqrt{x} + C, \quad C \in \mathbb{R} \] 7. Para \( f(x) = \frac{x^{3}}{2} - 3 x^{-2} - 2 x^{3} - x^{3/2} \): \[ F(x) = \frac{x^{4}}{8} + \frac{3}{x} - \frac{x^{4}}{2} - \frac{2}{5}x^{2}\sqrt{x} + C, \quad C \in \mathbb{R} \] 8. Para \( f(x) = 2 x^{3} - 4 x^{2} + 2 x \); considerando que \( F(0) = 15 \): \[ F(x) = \frac{x^{4}}{2} - \frac{4x^{3}}{3} + x^{2} + C, \quad C \text{ se determina usando } F(0) = 15 \] 9. Para \( g(x) = x^{2} + 2 x - 1 \); considerando que \( G(1) = 7 \): \[ G(x) = \frac{x^{3}}{3} + x^{2} - x + C, \quad C \text{ se determina usando } G(1) = 7 \] 10. Para \( f(x) = x^{3} - 3 x^{2} + 6 x \); considerando que \( F(-1) = 3 \): \[ F(x) = \frac{x^{4}}{4} - x^{3} + 3x^{2} + C, \quad C \text{ se determina usando } F(-1) = 3 \] Si necesitas que calculemos los valores de \( C \) para los casos 8, 9 y 10, házmelo saber.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Mind Expander

La antiderivada de \( f(x) = x^{9} \) es \( F(x) = \frac{x^{10}}{10} + C \) donde \( C \) es la constante de integración. Para \( f(x) = 2 x^{2 / 3} - 5 x^{3} \), aplicando la regla de antiderivación, obtenemos \( F(x) = 2 \cdot \frac{3}{5} x^{5/3} - \frac{5}{4} x^{4} + C \). Siguiendo con \( f(x) = -3 x^{-4} + 10 x^{2 / 3} - 7 x \), su antiderivada es \( F(x) = \frac{3}{3} x^{-3} + 10 \cdot \frac{3}{5} x^{5/3} - \frac{7}{2} x^{2} + C \). Para \( f(x) = \frac{x}{2} - 4 x^{3} - x^{4} \), se obtiene \( F(x) = \frac{1}{4} x^{2} - x^{4} - \frac{1}{5} x^{5} + C \). Ahora, para \( f(x) = 3 x + 8 x^{3} + x^{-3} + 5 x^{2} \), la antiderivada es \( F(x) = \frac{3}{2} x^{2} + 2 x^{4} - \frac{1}{2} x^{-2} + \frac{5}{3} x^{3} + C \). La antiderivada de \( f(x) = 9 x^{4/5} + x - \frac{2}{x^{3}} - \sqrt{x} \) resulta ser \( F(x) = \frac{9}{9/5} x^{9/5} + \frac{1}{2} x^{2} + \frac{2}{2} x^{-2} - \frac{2}{3} x^{3/2} + C \). Para \( f(x) = \frac{x^{3}}{2} - 3 x^{-2} - 2 x^{3} - x^{3/2} \), obtenemos \( F(x) = \frac{x^{4}}{8} + 3 x^{-1} - \frac{2}{4} x^{4} - \frac{2}{5} x^{5/2} + C \). Finalmente, dado \( f(x) = 2 x^{3} - 4 x^{2} + 2 x \) y considerando \( F(0) = 15 \), tenemos \( F(x) = \frac{1}{2} x^{4} - \frac{4}{3} x^{3} + x^{2} + C \). La antiderivada de \( g(x) = x^{2} + 2 x - 1 \), con \( G(1)=7 \), es \( G(x) = \frac{1}{3} x^{3} + x^{2} - x + C \). Finalmente, para \( f(x) = x^{3} - 3 x^{2} + 6 x \) y \( F(-1)=3 \), la antiderivada será \( F(x) = \frac{1}{4} x^{4} - x^{3} + 3 x + C \).

Related Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy