Responder
Here are the antiderivatives of the given functions:
1. \( F(x) = \frac{x^{10}}{10} + C \)
2. \( F(x) = \frac{6}{5}x\sqrt[3]{x^{2}} - \frac{5x^{4}}{4} + C \)
3. \( F(x) = \frac{1}{x^{3}} + 6x\sqrt[3]{x^{2}} - \frac{7x^{2}}{2} + C \)
4. \( F(x) = \frac{x^{2}}{4} - x^{4} - \frac{x^{5}}{5} + C \)
5. \( F(x) = \frac{3x^{2}}{2} + 2x^{4} - \frac{1}{2x^{2}} + \frac{5x^{3}}{3} + C \)
6. \( F(x) = 5x\sqrt[5]{x^{4}} + \frac{x^{2}}{2} + \frac{1}{x^{2}} - \frac{2}{3}x\sqrt{x} + C \)
7. \( F(x) = \frac{x^{4}}{8} + \frac{3}{x} - \frac{x^{4}}{2} - \frac{2}{5}x^{2}\sqrt{x} + C \)
8. \( F(x) = \frac{x^{4}}{2} - \frac{4x^{3}}{3} + x^{2} + C \) (with \( C \) determined using \( F(0) = 15 \))
9. \( G(x) = \frac{x^{3}}{3} + x^{2} - x + C \) (with \( C \) determined using \( G(1) = 7 \))
10. \( F(x) = \frac{x^{4}}{4} - x^{3} + 3x^{2} + C \) (with \( C \) determined using \( F(-1) = 3 \))
If you need the values of \( C \) for cases 8, 9, and 10, let me know.
Solución
Evaluate the integral by following steps:
- step0: Evaluate using formulas and rules:
\(\int x^{9} dx\)
- step1: Evaluate the integral:
\(\frac{x^{9+1}}{9+1}\)
- step2: Add the numbers:
\(\frac{x^{10}}{9+1}\)
- step3: Add the numbers:
\(\frac{x^{10}}{10}\)
- step4: Add the constant of integral C:
\(\frac{x^{10}}{10} + C, C \in \mathbb{R}\)
Calculate the integral \( x^{2}+2 x-1 \).
Evaluate the integral by following steps:
- step0: Evaluate using formulas and rules:
\(\int \left(x^{2}+2x-1\right) dx\)
- step1: Use properties of integrals:
\(\int x^{2} dx+\int 2x dx+\int -1 dx\)
- step2: Evaluate the integral:
\(\frac{x^{3}}{3}+\int 2x dx+\int -1 dx\)
- step3: Evaluate the integral:
\(\frac{x^{3}}{3}+x^{2}+\int -1 dx\)
- step4: Evaluate the integral:
\(\frac{x^{3}}{3}+x^{2}-x\)
- step5: Add the constant of integral C:
\(\frac{x^{3}}{3}+x^{2}-x + C, C \in \mathbb{R}\)
Calculate the integral \( x^{3}-3 x^{2}+6 x \).
Evaluate the integral by following steps:
- step0: Evaluate using formulas and rules:
\(\int \left(x^{3}-3x^{2}+6x\right) dx\)
- step1: Use properties of integrals:
\(\int x^{3} dx+\int -3x^{2} dx+\int 6x dx\)
- step2: Evaluate the integral:
\(\frac{x^{4}}{4}+\int -3x^{2} dx+\int 6x dx\)
- step3: Evaluate the integral:
\(\frac{x^{4}}{4}-x^{3}+\int 6x dx\)
- step4: Evaluate the integral:
\(\frac{x^{4}}{4}-x^{3}+3x^{2}\)
- step5: Add the constant of integral C:
\(\frac{x^{4}}{4}-x^{3}+3x^{2} + C, C \in \mathbb{R}\)
Calculate the integral \( 2 x^{3}-4 x^{2}+2 x \).
Evaluate the integral by following steps:
- step0: Evaluate using formulas and rules:
\(\int \left(2x^{3}-4x^{2}+2x\right) dx\)
- step1: Use properties of integrals:
\(\int 2x^{3} dx+\int -4x^{2} dx+\int 2x dx\)
- step2: Evaluate the integral:
\(\frac{x^{4}}{2}+\int -4x^{2} dx+\int 2x dx\)
- step3: Evaluate the integral:
\(\frac{x^{4}}{2}-\frac{4x^{3}}{3}+\int 2x dx\)
- step4: Evaluate the integral:
\(\frac{x^{4}}{2}-\frac{4x^{3}}{3}+x^{2}\)
- step5: Add the constant of integral C:
\(\frac{x^{4}}{2}-\frac{4x^{3}}{3}+x^{2} + C, C \in \mathbb{R}\)
Calculate the integral \( \frac{x}{2}-4 x^{3}-x^{4} \).
Evaluate the integral by following steps:
- step0: Evaluate using formulas and rules:
\(\int \left(\frac{x}{2}-4x^{3}-x^{4}\right) dx\)
- step1: Use properties of integrals:
\(\int \frac{x}{2} dx+\int -4x^{3} dx+\int -x^{4} dx\)
- step2: Evaluate the integral:
\(\frac{x^{2}}{4}+\int -4x^{3} dx+\int -x^{4} dx\)
- step3: Evaluate the integral:
\(\frac{x^{2}}{4}-x^{4}+\int -x^{4} dx\)
- step4: Evaluate the integral:
\(\frac{x^{2}}{4}-x^{4}-\frac{x^{5}}{5}\)
- step5: Add the constant of integral C:
\(\frac{x^{2}}{4}-x^{4}-\frac{x^{5}}{5} + C, C \in \mathbb{R}\)
Calculate the integral \( 2 x^{2 / 3}-5 x^{3} \).
Evaluate the integral by following steps:
- step0: Evaluate using formulas and rules:
\(\int \left(2x^{\frac{2}{3}}-5x^{3}\right) dx\)
- step1: Use properties of integrals:
\(\int 2x^{\frac{2}{3}} dx+\int -5x^{3} dx\)
- step2: Evaluate the integral:
\(\frac{6}{5}x^{\frac{5}{3}}+\int -5x^{3} dx\)
- step3: Evaluate the integral:
\(\frac{6}{5}x^{\frac{5}{3}}-\frac{5x^{4}}{4}\)
- step4: Simplify:
\(\frac{6}{5}x\sqrt[3]{x^{2}}-\frac{5x^{4}}{4}\)
- step5: Add the constant of integral C:
\(\frac{6}{5}x\sqrt[3]{x^{2}}-\frac{5x^{4}}{4} + C, C \in \mathbb{R}\)
Calculate the integral \( 3 x+8 x^{3}+x^{-3}+5 x^{2} \).
Evaluate the integral by following steps:
- step0: Evaluate using formulas and rules:
\(\int \left(3x+8x^{3}+x^{-3}+5x^{2}\right) dx\)
- step1: Use properties of integrals:
\(\int 3x dx+\int 8x^{3} dx+\int x^{-3} dx+\int 5x^{2} dx\)
- step2: Evaluate the integral:
\(\frac{3x^{2}}{2}+\int 8x^{3} dx+\int x^{-3} dx+\int 5x^{2} dx\)
- step3: Evaluate the integral:
\(\frac{3x^{2}}{2}+2x^{4}+\int x^{-3} dx+\int 5x^{2} dx\)
- step4: Evaluate the integral:
\(\frac{3x^{2}}{2}+2x^{4}-\frac{1}{2x^{2}}+\int 5x^{2} dx\)
- step5: Evaluate the integral:
\(\frac{3x^{2}}{2}+2x^{4}-\frac{1}{2x^{2}}+\frac{5x^{3}}{3}\)
- step6: Add the constant of integral C:
\(\frac{3x^{2}}{2}+2x^{4}-\frac{1}{2x^{2}}+\frac{5x^{3}}{3} + C, C \in \mathbb{R}\)
Calculate the integral \( -3 x^{-4}+10 x^{2 / 3}-7 x \).
Evaluate the integral by following steps:
- step0: Evaluate using formulas and rules:
\(\int \left(-3x^{-4}+10x^{\frac{2}{3}}-7x\right) dx\)
- step1: Use properties of integrals:
\(\int -3x^{-4} dx+\int 10x^{\frac{2}{3}} dx+\int -7x dx\)
- step2: Evaluate the integral:
\(\frac{1}{x^{3}}+\int 10x^{\frac{2}{3}} dx+\int -7x dx\)
- step3: Evaluate the integral:
\(\frac{1}{x^{3}}+6x^{\frac{5}{3}}+\int -7x dx\)
- step4: Evaluate the integral:
\(\frac{1}{x^{3}}+6x^{\frac{5}{3}}-\frac{7x^{2}}{2}\)
- step5: Simplify:
\(\frac{1}{x^{3}}+6x\sqrt[3]{x^{2}}-\frac{7x^{2}}{2}\)
- step6: Add the constant of integral C:
\(\frac{1}{x^{3}}+6x\sqrt[3]{x^{2}}-\frac{7x^{2}}{2} + C, C \in \mathbb{R}\)
Calculate the integral \( \frac{x^{3}}{2}-3 x^{-2}-2 x^{3}-x^{3 / 2} \).
Evaluate the integral by following steps:
- step0: Evaluate using formulas and rules:
\(\int \left(\frac{x^{3}}{2}-3x^{-2}-2x^{3}-x^{\frac{3}{2}}\right) dx\)
- step1: Use properties of integrals:
\(\int \frac{x^{3}}{2} dx+\int -3x^{-2} dx+\int -2x^{3} dx+\int -x^{\frac{3}{2}} dx\)
- step2: Evaluate the integral:
\(\frac{x^{4}}{8}+\int -3x^{-2} dx+\int -2x^{3} dx+\int -x^{\frac{3}{2}} dx\)
- step3: Evaluate the integral:
\(\frac{x^{4}}{8}+\frac{3}{x}+\int -2x^{3} dx+\int -x^{\frac{3}{2}} dx\)
- step4: Evaluate the integral:
\(\frac{x^{4}}{8}+\frac{3}{x}-\frac{x^{4}}{2}+\int -x^{\frac{3}{2}} dx\)
- step5: Evaluate the integral:
\(\frac{x^{4}}{8}+\frac{3}{x}-\frac{x^{4}}{2}-\frac{2}{5}x^{\frac{5}{2}}\)
- step6: Simplify:
\(\frac{x^{4}}{8}+\frac{3}{x}-\frac{x^{4}}{2}-\frac{2}{5}x^{2}\sqrt{x}\)
- step7: Add the constant of integral C:
\(\frac{x^{4}}{8}+\frac{3}{x}-\frac{x^{4}}{2}-\frac{2}{5}x^{2}\sqrt{x} + C, C \in \mathbb{R}\)
Calculate the integral \( 9 x^{4 / 5}+x-\frac{2}{x^{3}}-\sqrt{x} \).
Evaluate the integral by following steps:
- step0: Evaluate using formulas and rules:
\(\int \left(9x^{\frac{4}{5}}+x-\frac{2}{x^{3}}-\sqrt{x}\right) dx\)
- step1: Use properties of integrals:
\(\int 9x^{\frac{4}{5}} dx+\int x dx+\int -\frac{2}{x^{3}} dx+\int -\sqrt{x} dx\)
- step2: Evaluate the integral:
\(5x^{\frac{9}{5}}+\int x dx+\int -\frac{2}{x^{3}} dx+\int -\sqrt{x} dx\)
- step3: Evaluate the integral:
\(5x^{\frac{9}{5}}+\frac{x^{2}}{2}+\int -\frac{2}{x^{3}} dx+\int -\sqrt{x} dx\)
- step4: Evaluate the integral:
\(5x^{\frac{9}{5}}+\frac{x^{2}}{2}+\frac{1}{x^{2}}+\int -\sqrt{x} dx\)
- step5: Evaluate the integral:
\(5x^{\frac{9}{5}}+\frac{x^{2}}{2}+\frac{1}{x^{2}}-\frac{2}{3}x^{\frac{3}{2}}\)
- step6: Simplify:
\(5x\sqrt[5]{x^{4}}+\frac{x^{2}}{2}+\frac{1}{x^{2}}-\frac{2}{3}x^{\frac{3}{2}}\)
- step7: Simplify:
\(5x\sqrt[5]{x^{4}}+\frac{x^{2}}{2}+\frac{1}{x^{2}}-\frac{2}{3}x\sqrt{x}\)
- step8: Add the constant of integral C:
\(5x\sqrt[5]{x^{4}}+\frac{x^{2}}{2}+\frac{1}{x^{2}}-\frac{2}{3}x\sqrt{x} + C, C \in \mathbb{R}\)
Aquí están las antiderivadas de las funciones dadas:
1. Para \( f(x) = x^{9} \):
\[
F(x) = \frac{x^{10}}{10} + C, \quad C \in \mathbb{R}
\]
2. Para \( f(x) = 2 x^{2/3} - 5 x^{3} \):
\[
F(x) = \frac{6}{5}x\sqrt[3]{x^{2}} - \frac{5x^{4}}{4} + C, \quad C \in \mathbb{R}
\]
3. Para \( f(x) = -3 x^{-4} + 10 x^{2/3} - 7 x \):
\[
F(x) = \frac{1}{x^{3}} + 6x\sqrt[3]{x^{2}} - \frac{7x^{2}}{2} + C, \quad C \in \mathbb{R}
\]
4. Para \( f(x) = \frac{x}{2} - 4 x^{3} - x^{4} \):
\[
F(x) = \frac{x^{2}}{4} - x^{4} - \frac{x^{5}}{5} + C, \quad C \in \mathbb{R}
\]
5. Para \( f(x) = 3 x + 8 x^{3} + x^{-3} + 5 x^{2} \):
\[
F(x) = \frac{3x^{2}}{2} + 2x^{4} - \frac{1}{2x^{2}} + \frac{5x^{3}}{3} + C, \quad C \in \mathbb{R}
\]
6. Para \( f(x) = 9 x^{4/5} + x - \frac{2}{x^{3}} - \sqrt{x} \):
\[
F(x) = 5x\sqrt[5]{x^{4}} + \frac{x^{2}}{2} + \frac{1}{x^{2}} - \frac{2}{3}x\sqrt{x} + C, \quad C \in \mathbb{R}
\]
7. Para \( f(x) = \frac{x^{3}}{2} - 3 x^{-2} - 2 x^{3} - x^{3/2} \):
\[
F(x) = \frac{x^{4}}{8} + \frac{3}{x} - \frac{x^{4}}{2} - \frac{2}{5}x^{2}\sqrt{x} + C, \quad C \in \mathbb{R}
\]
8. Para \( f(x) = 2 x^{3} - 4 x^{2} + 2 x \); considerando que \( F(0) = 15 \):
\[
F(x) = \frac{x^{4}}{2} - \frac{4x^{3}}{3} + x^{2} + C, \quad C \text{ se determina usando } F(0) = 15
\]
9. Para \( g(x) = x^{2} + 2 x - 1 \); considerando que \( G(1) = 7 \):
\[
G(x) = \frac{x^{3}}{3} + x^{2} - x + C, \quad C \text{ se determina usando } G(1) = 7
\]
10. Para \( f(x) = x^{3} - 3 x^{2} + 6 x \); considerando que \( F(-1) = 3 \):
\[
F(x) = \frac{x^{4}}{4} - x^{3} + 3x^{2} + C, \quad C \text{ se determina usando } F(-1) = 3
\]
Si necesitas que calculemos los valores de \( C \) para los casos 8, 9 y 10, házmelo saber.
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución