Answer
**3. Are the following statements true?**
- **(a)** True
- **(b)** True
- **(c)** True
- **(d)** True
- **(e)** False
**4. Determine if the following ratios form a proportion. Also, write the mean and extreme terms where the ratios form a proportion.**
- **Proportion:** Two ratios \( \frac{a}{b} = \frac{c}{d} \) form a proportion if \( a \times d = b \times c \).
- **Extreme Terms:** The first and last terms in a proportion, i.e., \(a\) and \(d\).
- **Mean Terms:** The middle two terms in a proportion, i.e., \(b\) and \(c\).
**Example:**
Given the proportion \( \frac{2}{3} = \frac{4}{6} \):
- **Extreme Terms:** 2 and 6
- **Mean Terms:** 3 and 4
Solution
Let's evaluate each statement to determine whether the ratios form a true proportion. A proportion is true if the two ratios are equal when simplified.
### 3. Are the following statements true?
#### (a) \(40 \text{ persons} : 200 \text{ persons} = ₹15 : ₹75\)
- **Simplify both ratios:**
- \( \frac{40}{200} = 0.2 \)
- \( \frac{15}{75} = 0.2 \)
- **Conclusion:** Both ratios are equal.
**Answer:** **True**
---
#### (b) \(7.5 \text{ litres} : 15 \text{ litres} = 5 \text{ kg} : 10 \text{ kg}\)
- **Simplify both ratios:**
- \( \frac{7.5}{15} = 0.5 \)
- \( \frac{5}{10} = 0.5 \)
- **Conclusion:** Both ratios are equal.
**Answer:** **True**
---
#### (c) \(99 \text{ kg} : 45 \text{ kg} = ₹44 : ₹20\)
- **Simplify both ratios:**
- \( \frac{99}{45} = 2.2 \)
- \( \frac{44}{20} = 2.2 \)
- **Conclusion:** Both ratios are equal.
**Answer:** **True**
---
#### (d) \(32 \text{ m} : 64 \text{ m} = 6 \text{ sec} : 12 \text{ sec}\)
- **Simplify both ratios:**
- \( \frac{32}{64} = 0.5 \)
- \( \frac{6}{12} = 0.5 \)
- **Conclusion:** Both ratios are equal.
**Answer:** **True**
---
#### (e) \(45 \text{ km} : 60 \text{ km} = 12 \text{ hours} : 15 \text{ hours}\)
- **Simplify both ratios:**
- \( \frac{45}{60} = 0.75 \)
- \( \frac{12}{15} = 0.8 \)
- **Conclusion:** The ratios are **not** equal.
**Answer:** **False**
---
### Summary of Answers:
- **(a)** True
- **(b)** True
- **(c)** True
- **(d)** True
- **(e)** False
---
### 4. Determine if the following ratios form a proportion. Also, write the mean and extreme terms where the ratios form a proportion.
*Since specific ratios were not provided for question 4, here's a general guideline on how to determine proportions and identify mean and extreme terms:*
- **Proportion:** Two ratios \( \frac{a}{b} = \frac{c}{d} \) form a proportion if \( a \times d = b \times c \).
- **Extreme Terms:** The first and last terms in a proportion, i.e., \(a\) and \(d\).
- **Mean Terms:** The middle two terms in a proportion, i.e., \(b\) and \(c\).
**Example:**
Given the proportion \( \frac{2}{3} = \frac{4}{6} \):
- **Extreme Terms:** 2 and 6
- **Mean Terms:** 3 and 4
---
Feel free to provide the specific ratios for question 4 if you need a detailed analysis!
Reviewed and approved by the UpStudy tutoring team
Explain
Simplify this solution