Pregunta
upstudy study bank question image url

3. Are the following statements true? (a) 40 persons: 200 persons \( =₹ 15: ₹ 75 \) (b) 7.5 litres: 15 litres \( =5 \mathrm{~kg}: 10 \mathrm{~kg} \) (c) \( 99 \mathrm{~kg}: 45 \mathrm{~kg}=₹ 44: ₹ 20 \) (d) \( 32 \mathrm{~m}: 64 \mathrm{~m}=6 \mathrm{sec}: 12 \mathrm{sec} \) (e) \( 45 \mathrm{~km}: 60 \mathrm{~km}=12 \) hours: 15 hours 4. Determine if the following ratios form a proportion. Also, write the mi and extreme terms where the ratios form a proportion.

Ask by Stephens Rojas. in India
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**3. Are the following statements true?** - **(a)** True - **(b)** True - **(c)** True - **(d)** True - **(e)** False **4. Determine if the following ratios form a proportion. Also, write the mean and extreme terms where the ratios form a proportion.** - **Proportion:** Two ratios \( \frac{a}{b} = \frac{c}{d} \) form a proportion if \( a \times d = b \times c \). - **Extreme Terms:** The first and last terms in a proportion, i.e., \(a\) and \(d\). - **Mean Terms:** The middle two terms in a proportion, i.e., \(b\) and \(c\). **Example:** Given the proportion \( \frac{2}{3} = \frac{4}{6} \): - **Extreme Terms:** 2 and 6 - **Mean Terms:** 3 and 4

Solución

Let's evaluate each statement to determine whether the ratios form a true proportion. A proportion is true if the two ratios are equal when simplified. ### 3. Are the following statements true? #### (a) \(40 \text{ persons} : 200 \text{ persons} = ₹15 : ₹75\) - **Simplify both ratios:** - \( \frac{40}{200} = 0.2 \) - \( \frac{15}{75} = 0.2 \) - **Conclusion:** Both ratios are equal. **Answer:** **True** --- #### (b) \(7.5 \text{ litres} : 15 \text{ litres} = 5 \text{ kg} : 10 \text{ kg}\) - **Simplify both ratios:** - \( \frac{7.5}{15} = 0.5 \) - \( \frac{5}{10} = 0.5 \) - **Conclusion:** Both ratios are equal. **Answer:** **True** --- #### (c) \(99 \text{ kg} : 45 \text{ kg} = ₹44 : ₹20\) - **Simplify both ratios:** - \( \frac{99}{45} = 2.2 \) - \( \frac{44}{20} = 2.2 \) - **Conclusion:** Both ratios are equal. **Answer:** **True** --- #### (d) \(32 \text{ m} : 64 \text{ m} = 6 \text{ sec} : 12 \text{ sec}\) - **Simplify both ratios:** - \( \frac{32}{64} = 0.5 \) - \( \frac{6}{12} = 0.5 \) - **Conclusion:** Both ratios are equal. **Answer:** **True** --- #### (e) \(45 \text{ km} : 60 \text{ km} = 12 \text{ hours} : 15 \text{ hours}\) - **Simplify both ratios:** - \( \frac{45}{60} = 0.75 \) - \( \frac{12}{15} = 0.8 \) - **Conclusion:** The ratios are **not** equal. **Answer:** **False** --- ### Summary of Answers: - **(a)** True - **(b)** True - **(c)** True - **(d)** True - **(e)** False --- ### 4. Determine if the following ratios form a proportion. Also, write the mean and extreme terms where the ratios form a proportion. *Since specific ratios were not provided for question 4, here's a general guideline on how to determine proportions and identify mean and extreme terms:* - **Proportion:** Two ratios \( \frac{a}{b} = \frac{c}{d} \) form a proportion if \( a \times d = b \times c \). - **Extreme Terms:** The first and last terms in a proportion, i.e., \(a\) and \(d\). - **Mean Terms:** The middle two terms in a proportion, i.e., \(b\) and \(c\). **Example:** Given the proportion \( \frac{2}{3} = \frac{4}{6} \): - **Extreme Terms:** 2 and 6 - **Mean Terms:** 3 and 4 --- Feel free to provide the specific ratios for question 4 if you need a detailed analysis!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

If you're crafting your mathematical skills, let's explore these ratios a bit more! First up, we can check that (a) simplifies to 1:5, and (c) simplifies to approximately 2.2:1 which are not equal. However, for (b), when you convert 7.5 litres to kg based on a density, or in terms of 15 litres, you might find a proportion, so technically, that's true! (d) indeed holds as both sides reduce to 1:2, while (e) can show a slight discrepancy based on hours travelled; they don't match perfectly! To dive deeper into these ratios, remember that when checking proportions, a great tip is to cross-multiply and see if both products are equal. It's a nifty way to determine mathematical truth in ratios! Also, be careful not to get lost in the units; mismatched units can lead to incorrect conclusions faster than you can say "algebra"!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad