Answer
Here are the number of subsets and their expansions for each set:
1. **Set A ("dOg")**: 8 subsets
- \( \emptyset, \{d\}, \{O\}, \{g\}, \{d, O\}, \{d, g\}, \{O, g\}, \{d, O, g\} \)
2. **Set B ("mirtor")**: 32 subsets
- All possible combinations of the letters \( m, i, r, t, o \), including the empty set and the full set.
3. **Set C ("paper")**: 16 subsets
- \( \emptyset, \{p\}, \{a\}, \{e\}, \{r\}, \{p, a\}, \{p, e\}, \{p, r\}, \{a, e\}, \{a, r\}, \{e, r\}, \{p, a, e\}, \{p, a, r\}, \{p, e, r\}, \{a, e, r\}, \{p, a, e, r\} \)
4. **Set D (\( \{1, 2, 3, 4, 5, 6\} \))**: 64 subsets
- All possible combinations of the numbers 1 through 6, including the empty set and the full set.
5. **Set E (\( (s, m, a, r, t) \))**: 32 subsets
- All possible combinations of the letters \( s, m, a, r, t \), including the empty set and the full set.
**Summary:**
- **A**: 8 subsets
- **B**: 32 subsets
- **C**: 16 subsets
- **D**: 64 subsets
- **E**: 32 subsets
Solution
Sure! Let's analyze each set provided, determine the number of subsets for each, and then list (expand) those subsets.
### General Principle:
For any set with \( n \) elements, the number of possible subsets is \( 2^n \). This includes the empty set and the set itself.
---
### 1. Set \( A \) - The word "dOg"
**a. Define the Set:**
- The word "dOg" consists of the characters: 'd', 'O', 'g'.
- Therefore, \( A = \{\, d,\, O,\, g \,\} \)
**b. Number of Subsets:**
- \( n = 3 \)
- Number of subsets \( = 2^3 = 8 \)
**c. Subsets of \( A \):**
1. \( \emptyset \) (Empty Set)
2. \( \{\, d \,\} \)
3. \( \{\, O \,\} \)
4. \( \{\, g \,\} \)
5. \( \{\, d,\, O \,\} \)
6. \( \{\, d,\, g \,\} \)
7. \( \{\, O,\, g \,\} \)
8. \( \{\, d,\, O,\, g \,\} \)
---
### 2. Set \( B \) - The word "mirtor"
**a. Define the Set:**
- The word "mirtor" consists of the letters: 'm', 'i', 'r', 't', 'o', 'r'.
- Since sets contain unique elements, duplicate 'r' is considered once.
- Therefore, \( B = \{\, m,\, i,\, r,\, t,\, o \,\} \)
**b. Number of Subsets:**
- \( n = 5 \)
- Number of subsets \( = 2^5 = 32 \)
**c. Subsets of \( B \):**
Listing all 32 subsets can be extensive, but here's how they are structured:
1. \( \emptyset \)
2. Single-element subsets: \( \{\, m \,\} \), \( \{\, i \,\} \), \( \{\, r \,\} \), \( \{\, t \,\} \), \( \{\, o \,\} \)
3. Two-element subsets: All combinations like \( \{\, m, i \,\} \), \( \{\, m, r \,\} \), ..., \( \{\, t, o \,\} \)
4. Three-element subsets: All combinations like \( \{\, m, i, r \,\} \), ..., \( \{\, r, t, o \,\} \)
5. Four-element subsets: All combinations like \( \{\, m, i, r, t \,\} \), ..., \( \{\, i, r, t, o \,\} \)
6. The entire set: \( \{\, m, i, r, t, o \,\} \)
*(For brevity, only the structure is shown. Each subset can be explicitly listed as per requirement.)*
---
### 3. Set \( C \) - The word "paper"
**a. Define the Set:**
- The word "paper" consists of the letters: 'p', 'a', 'p', 'e', 'r'.
- Removing duplicates, we get: 'p', 'a', 'e', 'r'.
- Therefore, \( C = \{\, p,\, a,\, e,\, r \,\} \)
**b. Number of Subsets:**
- \( n = 4 \)
- Number of subsets \( = 2^4 = 16 \)
**c. Subsets of \( C \):**
1. \( \emptyset \)
2. \( \{\, p \,\} \)
3. \( \{\, a \,\} \)
4. \( \{\, e \,\} \)
5. \( \{\, r \,\} \)
6. \( \{\, p, a \,\} \)
7. \( \{\, p, e \,\} \)
8. \( \{\, p, r \,\} \)
9. \( \{\, a, e \,\} \)
10. \( \{\, a, r \,\} \)
11. \( \{\, e, r \,\} \)
12. \( \{\, p, a, e \,\} \)
13. \( \{\, p, a, r \,\} \)
14. \( \{\, p, e, r \,\} \)
15. \( \{\, a, e, r \,\} \)
16. \( \{\, p, a, e, r \,\} \)
---
### 4. Set \( D \) - The set \( \{1, 2, 3, 4, 5, 6\} \)
**a. Define the Set:**
- \( D = \{\, 1,\, 2,\, 3,\, 4,\, 5,\, 6 \,\} \)
**b. Number of Subsets:**
- \( n = 6 \)
- Number of subsets \( = 2^6 = 64 \)
**c. Subsets of \( D \):**
Listing all 64 subsets is extensive, but they include:
1. \( \emptyset \)
2. All single-element subsets: \( \{1\} \), \( \{2\} \), ..., \( \{6\} \)
3. All two-element subsets: \( \{1,2\} \), \( \{1,3\} \), ..., \( \{5,6\} \)
4. All three-element subsets: \( \{1,2,3\} \), ..., \( \{4,5,6\} \)
5. All four-element subsets: \( \{1,2,3,4\} \), ..., \( \{3,4,5,6\} \)
6. All five-element subsets: \( \{1,2,3,4,5\} \), ..., \( \{2,3,4,5,6\} \)
7. The entire set: \( \{1,2,3,4,5,6\} \)
*(Each combination can be explicitly listed as needed.)*
---
### 5. Set \( E \) - The tuple \( (s, m, a, r, t) \)
**a. Define the Set:**
- Although presented as a tuple, to form a set, we consider unique elements.
- \( E = \{\, s,\, m,\, a,\, r,\, t \,\} \)
**b. Number of Subsets:**
- \( n = 5 \)
- Number of subsets \( = 2^5 = 32 \)
**c. Subsets of \( E \):**
1. \( \emptyset \)
2. Single-element subsets: \( \{s\} \), \( \{m\} \), \( \{a\} \), \( \{r\} \), \( \{t\} \)
3. Two-element subsets: \( \{s, m\} \), \( \{s, a\} \), ..., \( \{r, t\} \)
4. Three-element subsets: \( \{s, m, a\} \), ..., \( \{a, r, t\} \)
5. Four-element subsets: \( \{s, m, a, r\} \), ..., \( \{m, a, r, t\} \)
6. The entire set: \( \{s, m, a, r, t\} \)
*(Each subset can be explicitly listed as required.)*
---
### Summary Table:
| Set | Elements | Number of Subsets |
|-----|----------|-------------------|
| **A** | \( \{\, d,\, O,\, g \,\} \) | 8 |
| **B** | \( \{\, m,\, i,\, r,\, t,\, o \,\} \) | 32 |
| **C** | \( \{\, p,\, a,\, e,\, r \,\} \) | 16 |
| **D** | \( \{\, 1,\, 2,\, 3,\, 4,\, 5,\, 6 \,\} \) | 64 |
| **E** | \( \{\, s,\, m,\, a,\, r,\, t \,\} \) | 32 |
---
**Note:** For larger sets like \( D \) and \( E \), it's often impractical to list all subsets manually. However, understanding the structure and being able to compute the total number is essential.