Question
upstudy study bank question image url

2. Indien \( 2^{L x}=9 t \) gee \( \frac{3^{x-1}+3^{x+1}}{10.6^{x}} \) in terme van \( t \)

Ask by Campbell Horton. in South Africa
Feb 03,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

\[ \frac{1}{3 \cdot (9t)^{1/L}} \]

Solution

Om die uitdrukking \(\frac{3^{x-1} + 3^{x+1}}{10 \cdot 6^{x}}\) in terme van \(t\) uit te druk, volg ons hierdie stappe: ### Gegewe: \[ 2^{Lx} = 9t \] Ons wil \(\frac{3^{x-1} + 3^{x+1}}{10 \cdot 6^{x}}\) omskryf in terme van \(t\). ### Stap 1: Vereenvoudig die Uitdrukking Eers vereenvoudig ons die breuk: \[ \frac{3^{x-1} + 3^{x+1}}{10 \cdot 6^{x}} = \frac{\frac{3^x}{3} + 3^{x} \cdot 3}{10 \cdot (2 \cdot 3)^x} \] \[ = \frac{\left(\frac{1}{3} + 3\right) 3^x}{10 \cdot 2^x 3^x} \] \[ = \frac{\frac{10}{3} \cdot 3^x}{10 \cdot 2^x \cdot 3^x} = \frac{\frac{10}{3}}{10 \cdot 2^x} = \frac{1}{3 \cdot 2^x} \] Dus: \[ \frac{3^{x-1} + 3^{x+1}}{10 \cdot 6^{x}} = \frac{1}{3 \cdot 2^x} \] ### Stap 2: Los vir \(2^x\) in Terme van \(t\) Gegee dat: \[ 2^{Lx} = 9t \] Neem die \(L\)-ste wortel van beide kante: \[ 2^x = (9t)^{\frac{1}{L}} \] ### Stap 3: Vervang \(2^x\) in die Vereenvoudigde Uitdrukking Vervang \(2^x\) in \(\frac{1}{3 \cdot 2^x}\): \[ \frac{1}{3 \cdot 2^x} = \frac{1}{3 \cdot (9t)^{\frac{1}{L}}} \] ### Finale Uitdrukking in Termen van \(t\): \[ \frac{3^{x-1} + 3^{x+1}}{10 \cdot 6^{x}} = \frac{1}{3 \cdot (9t)^{\frac{1}{L}}} \] **Dus, die uitdrukking in terme van \(t\) is:** \[ \boxed{\,\dfrac{1}{\,3\,\cdot\,\left(9\,t\,\right)^{\,1/L\,}}\,} \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

The Deep Dive

Om die uitdrukking \(\frac{3^{x-1}+3^{x+1}}{10.6^{x}}\) in terme van \(t\) te gee, begin ons met die gegewe vergelyking \(2^{Lx} = 9t\). Eerstens, los ons vir \(x\): \[ Lx = \log_2(9t) \implies x = \frac{\log_2(9t)}{L} \] Nou bereken ons \(3^{x-1}+3^{x+1}\): \[ 3^{x-1} + 3^{x+1} = \frac{3^x}{3} + 3 \cdot 3^x = \frac{1}{3}3^x + 3 \cdot 3^x = \frac{1}{3}3^x + \frac{9}{3}3^x = \frac{10}{3}3^x \] Vervolgens kan ons \(10.6^{x}\) herskryf: \[ 10.6^{x} = 10 \cdot 6^{x} \] Nou kan ons die uiteindelike breuk skryf as: \[ \frac{3^{x-1} + 3^{x+1}}{10.6^{x}} = \frac{\frac{10}{3}3^x}{10 \cdot 6^{x}} = \frac{10 \cdot 3^x}{30 \cdot 6^{x}} = \frac{1}{3} \cdot \frac{3^x}{6^x} = \frac{1}{3} \left(\frac{3}{6}\right)^x = \frac{1}{3} \cdot \left(\frac{1}{2}\right)^x \] Alhoewel ons vroeg herstel het met \(2^{Lx} = 9t\), kan ons gebruik maak van \(x = \frac{\log_2(9t)}{L}\) om \(\left( \frac{1}{2} \right)^x\) in terme van \(t\) te herskryf. En so, in terme van \(t\), kan ons dit skryf as: \[ \frac{1}{3} \cdot \left(\frac{1}{2}\right)^{\frac{\log_2(9t)}{L}} \] Dit is die finale uitdrukking van \(\frac{3^{x-1} + 3^{x+1}}{10.6^{x}}\) in terme van \(t\).

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy