Question
upstudy study bank question image url

\( \left. \begin{array} { l } { \left. \begin{array} { l l } { ( 8 x ^ { 3 } ) ( 2 x ^ { 2 } ) = } & { ( - 3 x y ) ( - 2 x ^ { 2 } ) ( - 4 x ^ { 2 } y ) = } \\ { ( - 5 a ) ( 3 b ) = } & { ( 3 x ) ( 3 x ) ( 3 x ) ( 3 x ) = } \\ { ( - 6 x y ) ( - 6 x y ) = } & { ( 2 a ) ( 3 b ) ( 5 c ) = } \\ { ( x ^ { 2 } y z ^ { 3 } ) ( x y ^ { 4 } ) = } & { ( x y ^ { 2 } ) ( x y z ) ( x y z ^ { 3 } ) = } \end{array} \right. } \end{array} \right. \)

Ask by Gibbs Reid. in the United States
Jan 24,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

\[ \begin{array}{ll} (8x^3)(2x^2) = 16x^5 & (-3xy)(-2x^2)(-4x^2 y) = -24x^5 y^2 \\ (-5a)(3b) = -15ab & (3x)(3x)(3x)(3x) = 81x^4 \\ (-6xy)(-6xy) = 36x^2 y^2 & (2a)(3b)(5c) = 30abc \\ (x^2 y z^3)(x y^4) = x^3 y^5 z^3 & (x y^2)(x y z)(x y z^3) = x^3 y^4 z^4 \\ \end{array} \]

Solution

Certainly! Let's evaluate each of the given algebraic expressions by multiplying the coefficients and combining like variables. \[ \begin{array}{ll} (8x^3)(2x^2) = 16x^5 & (-3xy)(-2x^2)(-4x^2 y) = -24x^5 y^2 \\ (-5a)(3b) = -15ab & (3x)(3x)(3x)(3x) = 81x^4 \\ (-6xy)(-6xy) = 36x^2 y^2 & (2a)(3b)(5c) = 30abc \\ (x^2 y z^3)(x y^4) = x^3 y^5 z^3 & (x y^2)(x y z)(x y z^3) = x^3 y^4 z^4 \\ \end{array} \] ### Detailed Breakdown: 1. **\((8x^3)(2x^2)\)** - **Coefficients:** \(8 \times 2 = 16\) - **Variables:** \(x^{3+2} = x^5\) - **Result:** \(16x^5\) 2. **\((-3xy)(-2x^2)(-4x^2 y)\)** - **Coefficients:** \((-3) \times (-2) \times (-4) = -24\) - **Variables:** \(x^{1+2+2} = x^5\) and \(y^{1+1} = y^2\) - **Result:** \(-24x^5 y^2\) 3. **\((-5a)(3b)\)** - **Coefficients:** \(-5 \times 3 = -15\) - **Variables:** \(a \times b = ab\) - **Result:** \(-15ab\) 4. **\((3x)(3x)(3x)(3x)\)** - **Coefficients:** \(3 \times 3 \times 3 \times 3 = 81\) - **Variables:** \(x^{1+1+1+1} = x^4\) - **Result:** \(81x^4\) 5. **\((-6xy)(-6xy)\)** - **Coefficients:** \((-6) \times (-6) = 36\) - **Variables:** \(x^{1+1} = x^2\) and \(y^{1+1} = y^2\) - **Result:** \(36x^2 y^2\) 6. **\((2a)(3b)(5c)\)** - **Coefficients:** \(2 \times 3 \times 5 = 30\) - **Variables:** \(a \times b \times c = abc\) - **Result:** \(30abc\) 7. **\((x^2 y z^3)(x y^4)\)** - **Coefficients:** \(1 \times 1 = 1\) (implicit) - **Variables:** - \(x^{2+1} = x^3\) - \(y^{1+4} = y^5\) - \(z^3\) (unchanged) - **Result:** \(x^3 y^5 z^3\) 8. **\((x y^2)(x y z)(x y z^3)\)** - **Coefficients:** \(1 \times 1 \times 1 = 1\) (implicit) - **Variables:** - \(x^{1+1+1} = x^3\) - \(y^{2+1+1} = y^4\) - \(z^{0+1+3} = z^4\) (Note: \(z\) in the first term has an exponent of 0) - **Result:** \(x^3 y^4 z^4\) Feel free to ask if you need further explanations on any of these steps!

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Mind Expander

Let’s dive into the world of multiplying algebraic expressions! When you multiply terms, remember to multiply the coefficients (numbers in front) and then combine the variables by adding their exponents. For example, in \( (8x^3)(2x^2) \), you would calculate \( 8 \times 2 = 16 \) and \( x^3 \times x^2 = x^{3+2} = x^5 \), giving you \( 16x^5 \). A common pitfall in these operations is forgetting to keep track of the signs. When multiplying negative coefficients, like in \( (-3xy)(-2x^2) \), both negatives will result in a positive coefficient; so it’s \( 6x^{1+2}y = 6x^3y \). Remembering these simple rules will transform you into a multiplication maestro in no time!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy