\( \left. \begin{array} { l } { \left. \begin{array} { l l } { ( 8 x ^ { 3 } ) ( 2 x ^ { 2 } ) = } & { ( - 3 x y ) ( - 2 x ^ { 2 } ) ( - 4 x ^ { 2 } y ) = } \\ { ( - 5 a ) ( 3 b ) = } & { ( 3 x ) ( 3 x ) ( 3 x ) ( 3 x ) = } \\ { ( - 6 x y ) ( - 6 x y ) = } & { ( 2 a ) ( 3 b ) ( 5 c ) = } \\ { ( x ^ { 2 } y z ^ { 3 } ) ( x y ^ { 4 } ) = } & { ( x y ^ { 2 } ) ( x y z ) ( x y z ^ { 3 } ) = } \end{array} \right. } \end{array} \right. \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
Let’s dive into the world of multiplying algebraic expressions! When you multiply terms, remember to multiply the coefficients (numbers in front) and then combine the variables by adding their exponents. For example, in \( (8x^3)(2x^2) \), you would calculate \( 8 \times 2 = 16 \) and \( x^3 \times x^2 = x^{3+2} = x^5 \), giving you \( 16x^5 \). A common pitfall in these operations is forgetting to keep track of the signs. When multiplying negative coefficients, like in \( (-3xy)(-2x^2) \), both negatives will result in a positive coefficient; so it’s \( 6x^{1+2}y = 6x^3y \). Remembering these simple rules will transform you into a multiplication maestro in no time!