Question
upstudy study bank question image url

Comprosar las mahrices: \( A=\left(\begin{array}{ll}1 & 2 \\ 3 & 0\end{array}\right) \) y \( B=\left(\begin{array}{cc}2 & -1 \\ 1 & 3\end{array}\right) \) que; a) \( (A+B)^{2}=A^{2}+2 A B+B^{2} \) b) \( (A-B)^{2}=A^{2}-2 A B+B^{2} \) c) \( (A+B)(A-B)=A^{2}-B^{2} \)

Ask by Davies Hodgson. in Equatorial Guinea
Jan 24,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Las identidades \( (A + B)^2 = A^2 + 2AB + B^2 \), \( (A - B)^2 = A^2 - 2AB + B^2 \), y \( (A + B)(A - B) = A^2 - B^2 \) **no se cumplen** para las matrices \( A \) y \( B \) dadas.

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Reviewed and approved by the UpStudy tutoring team

Beyond the Answer

Para verificar las igualdades, primero necesitamos calcular \( A^2 \), \( B^2 \), \( AB \), \( A+B \), \( A-B \), y luego los resultados de \( (A+B)^2 \) y \( (A-B)^2 \). Calculamos lo siguiente: 1. \( A^2 = A \cdot A = \left(\begin{array}{cc}1 & 2 \\ 3 & 0\end{array}\right) \cdot \left(\begin{array}{cc}1 & 2 \\ 3 & 0\end{array}\right) = \left(\begin{array}{cc}7 & 4 \\ 3 & 6\end{array}\right) \) 2. \( B^2 = B \cdot B = \left(\begin{array}{cc}2 & -1 \\ 1 & 3\end{array}\right) \cdot \left(\begin{array}{cc}2 & -1 \\ 1 & 3\end{array}\right) = \left(\begin{array}{cc}1 & -5 \\ 5 & 8\end{array}\right) \) 3. \( AB = A \cdot B = \left(\begin{array}{cc}1 & 2 \\ 3 & 0\end{array}\right) \cdot \left(\begin{array}{cc}2 & -1 \\ 1 & 3\end{array}\right) = \left(\begin{array}{cc}4 & 5 \\ 6 & -3\end{array}\right) \) 4. \( A + B = \left(\begin{array}{cc}1+2 & 2-1 \\ 3+1 & 0+3\end{array}\right) = \left(\begin{array}{cc}3 & 1 \\ 4 & 3\end{array}\right) \) 5. \( A - B = \left(\begin{array}{cc}1-2 & 2+1 \\ 3-1 & 0-3\end{array}\right) = \left(\begin{array}{cc}-1 & 3 \\ 2 & -3\end{array}\right) \) Ahora procedemos a evaluar cada una de las igualdades: a) \( (A+B)^2 = \left(\begin{array}{cc}3 & 1 \\ 4 & 3\end{array}\right) \cdot \left(\begin{array}{cc}3 & 1 \\ 4 & 3\end{array}\right) = \left(\begin{array}{cc}12 & 12 \\ 21 & 15\end{array}\right) \) Ahora, sumamos \( A^2 + 2AB + B^2 \): \[ A^2 + B^2 + 2AB = \left(\begin{array}{cc}7 & 4 \\ 3 & 6\end{array}\right) + \left(\begin{array}{cc}1 & -5 \\ 5 & 8\end{array}\right) + 2\left(\begin{array}{cc}4 & 5 \\ 6 & -3\end{array}\right) \] Al calcular, vemos que no coincide. b) Similarmente, calculamos \( (A-B)^2 \) y comparamos con \( A^2 - 2AB + B^2 \). c) Para \( (A+B)(A-B) \): \[ (A+B)(A-B) = \left(\begin{array}{cc}3 & 1 \\ 4 & 3\end{array}\right) \cdot \left(\begin{array}{cc}-1 & 3 \\ 2 & -3\end{array}\right) = \left(\begin{array}{cc}-1 & 12 \\ -6 & 12\end{array}\right) \] Esto debería ser \( A^2 - B^2 \). Después de realizar estos cálculos, podemos concluir si las igualdades son válidas o no. En este caso, parece que: a) No es cierto. b) No es cierto. c) Es cierto. Recuerda siempre revisar cada cálculo paso a paso, ¡ya que las matrices pueden llevar a confusiones!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy