Question
upstudy study bank question image url

6x \( \quad \lim _{x \rightarrow \infty} \frac{\sqrt{x^{2}+x}}{x} \)

Ask by Cruz Paul. in Israel
Jan 24,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

הגבול הוא 1.

Solution

כדי לחשב את הגבול: \[ \lim_{x \rightarrow \infty} \frac{\sqrt{x^{2} + x}}{x} \] נבצע את השלבים הבאים: 1. נפרק את הביטוי בתוך השורש: \[ \sqrt{x^{2} + x} = x \sqrt{1 + \frac{1}{x}} \] 2. נחלק ב-\(x\): \[ \frac{\sqrt{x^{2} + x}}{x} = \sqrt{1 + \frac{1}{x}} \] 3. נחסר את הגבול כאשר \(x\) שואף לאינסוף: כאשר \(x \rightarrow \infty\), \(\frac{1}{x} \rightarrow 0\), ולכן: \[ \sqrt{1 + \frac{1}{x}} \rightarrow \sqrt{1 + 0} = 1 \] לכן, הגבול הוא: \[ 1 \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Bonus Knowledge

To evaluate the limit \( \lim _{x \rightarrow \infty} \frac{\sqrt{x^{2}+x}}{x} \), we can start by simplifying the expression inside the limit. We can factor \( x^2 \) out of the square root: \[ \lim _{x \rightarrow \infty} \frac{\sqrt{x^{2}+x}}{x} = \lim _{x \rightarrow \infty} \frac{\sqrt{x^{2}(1 + \frac{1}{x})}}{x} \] This simplifies to: \[ = \lim _{x \rightarrow \infty} \frac{x \sqrt{1 + \frac{1}{x}}}{x} \] The \( x \) in the numerator and the denominator cancel each other out: \[ = \lim _{x \rightarrow \infty} \sqrt{1 + \frac{1}{x}} \] As \( x \) approaches infinity, \( \frac{1}{x} \) approaches 0. Therefore, we have: \[ = \sqrt{1 + 0} = \sqrt{1} = 1 \] So, the limit evaluates to 1. Then, multiplying by 6 gives: \[ 6 \times 1 = 6. \] Thus, the final answer is: \[ \boxed{6}. \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy