Answer
For any angles \( A \) and \( B \), the following trigonometric identity holds:
\[
\cos(A - B) = \cos A \cdot \cos B + \sin A \cdot \sin B
\]
This identity is consistent across different angle pairs and does not generally relate to \( \cos A - \cos B \).
Solution
Certainly! Let's tackle **Question I** systematically by evaluating each part step-by-step for the given angle pairs.
---
### **1.1. Evaluations for Given Angle Pairs**
We are provided with three pairs of angles:
1. **Pair (i):** \( A = 60^{\circ} \), \( B = 30^{\circ} \)
2. **Pair (ii):** \( A = 110^{\circ} \), \( B = 50^{\circ} \)
3. **Pair (iii):** \( A = 225^{\circ} \), \( B = 135^{\circ} \)
For each pair, we'll evaluate the following expressions:
- **(a)** \( \cos(A - B) \)
- **(b)** \( \cos A - \cos B \)
- **(c)** \( \cos A \cdot \cos B + \sin A \cdot \sin B \)
Let's proceed with the calculations using a calculator (ensure it's set to degree mode).
---
#### **Pair (i): \( A = 60^{\circ} \), \( B = 30^{\circ} \)**
1. **(a) \( \cos(A - B) \):**
\[
\cos(60^{\circ} - 30^{\circ}) = \cos(30^{\circ}) \approx 0.8660
\]
2. **(b) \( \cos A - \cos B \):**
\[
\cos(60^{\circ}) - \cos(30^{\circ}) = 0.5 - 0.8660 = -0.3660
\]
3. **(c) \( \cos A \cdot \cos B + \sin A \cdot \sin B \):**
\[
(0.5)(0.8660) + (\frac{\sqrt{3}}{2})(0.5) \approx 0.4330 + 0.4330 = 0.8660
\]
---
#### **Pair (ii): \( A = 110^{\circ} \), \( B = 50^{\circ} \)**
1. **(a) \( \cos(A - B) \):**
\[
\cos(110^{\circ} - 50^{\circ}) = \cos(60^{\circ}) \approx 0.5
\]
2. **(b) \( \cos A - \cos B \):**
\[
\cos(110^{\circ}) - \cos(50^{\circ}) \approx (-0.3420) - 0.6428 = -0.9848
\]
3. **(c) \( \cos A \cdot \cos B + \sin A \cdot \sin B \):**
\[
(-0.3420)(0.6428) + (0.9397)(0.7660) \approx -0.2196 + 0.7201 = 0.5005 \approx 0.5
\]
---
#### **Pair (iii): \( A = 225^{\circ} \), \( B = 135^{\circ} \)**
1. **(a) \( \cos(A - B) \):**
\[
\cos(225^{\circ} - 135^{\circ}) = \cos(90^{\circ}) = 0
\]
2. **(b) \( \cos A - \cos B \):**
\[
\cos(225^{\circ}) - \cos(135^{\circ}) \approx (-0.7071) - (-0.7071) = 0
\]
3. **(c) \( \cos A \cdot \cos B + \sin A \cdot \sin B \):**
\[
(-0.7071)(-0.7071) + (-0.7071)(0.7071) \approx 0.4999 - 0.4999 = 0
\]
---
### **Comparison of Values**
Let's tabulate the results for clarity:
| Pair | \( \cos(A - B) \) | \( \cos A - \cos B \) | \( \cos A \cdot \cos B + \sin A \cdot \sin B \) |
|------|--------------------|------------------------|-----------------------------------|
| (i) | 0.8660 | -0.3660 | 0.8660 |
| (ii) | 0.5000 | -0.9848 | 0.5005 ≈ 0.5000 |
| (iii)| 0 | 0 | 0 |
**Observations:**
1. **\( \cos(A - B) \)** and **\( \cos A \cdot \cos B + \sin A \cdot \sin B \)** yield **identical or nearly identical** results for all pairs.
2. **\( \cos A - \cos B \)** does **not** match \( \cos(A - B) \) except in a specific case (Pair (iii)).
---
### **1.2. General Conclusion**
From the comparisons above, we can infer a **general trigonometric identity**:
\[
\cos(A - B) = \cos A \cdot \cos B + \sin A \cdot \sin B
\]
This identity holds true **for any values of \( A \) and \( B \)**. The term \( \cos A - \cos B \), however, does not generally relate to \( \cos(A - B) \) in a consistent manner and does not represent a standard trigonometric identity.
**Key Takeaways:**
- The expression \( \cos(A - B) \) **always equals** \( \cos A \cdot \cos B + \sin A \cdot \sin B \) regardless of the angle measures.
- The difference \( \cos A - \cos B \) does **not** equate to \( \cos(A - B) \) except in specific instances where the angles cause the terms to cancel out or align coincidentally.
---
### **Further Insights**
Understanding these identities is crucial in simplifying complex trigonometric expressions and solving equations involving compound angles. Recognizing that **\( \cos(A - B) \)** aligns perfectly with the sum of the products of cosines and sines emphasizes the interconnectedness of trigonometric functions and their fundamental identities.
Reviewed and approved by the UpStudy tutoring team
Explain
Simplify this solution