Pregunta
upstudy study bank question image url

INVESTIGATING COMPOUND ANGLES AND THEREFORF, DOUBLE ANGLES, QUESTION I 1.1. Given: (i) \( A=60^{\circ} \) and \( B=30^{\circ} \) (ii) \( A=110^{\circ} \) and \( B=50^{\circ} \) (iii) \( A=225^{\circ} \) and \( B=135^{\circ} \) Use a calculator to evaluate each of the following: (a) \( \cos (A-B) \) (b) \( \cos A-\cos B \) (c) \( \cos A \cos B+\sin A \sin B \) Compare the values of \( \cos (A-B) \) with the values of \( \cos A-\cos B \) and 1.2 \( \cos A \cdot \cos B+\sin A \cdot \sin B \) Using your \( \operatorname{compurison} \) in Question 1.2 ., what general \( \operatorname{conclusion~can~be~made~regarding~} \) (2) \( \cos (A-B) \), \( \cos A-\cos B \) and \( \cos A \). \( \cos B+\sin A . \sin B \) for any values of \( A \) and \( B \) ?

Ask by Tucker Coleman. in South Africa
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

For any angles \( A \) and \( B \), the following trigonometric identity holds: \[ \cos(A - B) = \cos A \cdot \cos B + \sin A \cdot \sin B \] This identity is consistent across different angle pairs and does not generally relate to \( \cos A - \cos B \).

Solución

Certainly! Let's tackle **Question I** systematically by evaluating each part step-by-step for the given angle pairs. --- ### **1.1. Evaluations for Given Angle Pairs** We are provided with three pairs of angles: 1. **Pair (i):** \( A = 60^{\circ} \), \( B = 30^{\circ} \) 2. **Pair (ii):** \( A = 110^{\circ} \), \( B = 50^{\circ} \) 3. **Pair (iii):** \( A = 225^{\circ} \), \( B = 135^{\circ} \) For each pair, we'll evaluate the following expressions: - **(a)** \( \cos(A - B) \) - **(b)** \( \cos A - \cos B \) - **(c)** \( \cos A \cdot \cos B + \sin A \cdot \sin B \) Let's proceed with the calculations using a calculator (ensure it's set to degree mode). --- #### **Pair (i): \( A = 60^{\circ} \), \( B = 30^{\circ} \)** 1. **(a) \( \cos(A - B) \):** \[ \cos(60^{\circ} - 30^{\circ}) = \cos(30^{\circ}) \approx 0.8660 \] 2. **(b) \( \cos A - \cos B \):** \[ \cos(60^{\circ}) - \cos(30^{\circ}) = 0.5 - 0.8660 = -0.3660 \] 3. **(c) \( \cos A \cdot \cos B + \sin A \cdot \sin B \):** \[ (0.5)(0.8660) + (\frac{\sqrt{3}}{2})(0.5) \approx 0.4330 + 0.4330 = 0.8660 \] --- #### **Pair (ii): \( A = 110^{\circ} \), \( B = 50^{\circ} \)** 1. **(a) \( \cos(A - B) \):** \[ \cos(110^{\circ} - 50^{\circ}) = \cos(60^{\circ}) \approx 0.5 \] 2. **(b) \( \cos A - \cos B \):** \[ \cos(110^{\circ}) - \cos(50^{\circ}) \approx (-0.3420) - 0.6428 = -0.9848 \] 3. **(c) \( \cos A \cdot \cos B + \sin A \cdot \sin B \):** \[ (-0.3420)(0.6428) + (0.9397)(0.7660) \approx -0.2196 + 0.7201 = 0.5005 \approx 0.5 \] --- #### **Pair (iii): \( A = 225^{\circ} \), \( B = 135^{\circ} \)** 1. **(a) \( \cos(A - B) \):** \[ \cos(225^{\circ} - 135^{\circ}) = \cos(90^{\circ}) = 0 \] 2. **(b) \( \cos A - \cos B \):** \[ \cos(225^{\circ}) - \cos(135^{\circ}) \approx (-0.7071) - (-0.7071) = 0 \] 3. **(c) \( \cos A \cdot \cos B + \sin A \cdot \sin B \):** \[ (-0.7071)(-0.7071) + (-0.7071)(0.7071) \approx 0.4999 - 0.4999 = 0 \] --- ### **Comparison of Values** Let's tabulate the results for clarity: | Pair | \( \cos(A - B) \) | \( \cos A - \cos B \) | \( \cos A \cdot \cos B + \sin A \cdot \sin B \) | |------|--------------------|------------------------|-----------------------------------| | (i) | 0.8660 | -0.3660 | 0.8660 | | (ii) | 0.5000 | -0.9848 | 0.5005 ≈ 0.5000 | | (iii)| 0 | 0 | 0 | **Observations:** 1. **\( \cos(A - B) \)** and **\( \cos A \cdot \cos B + \sin A \cdot \sin B \)** yield **identical or nearly identical** results for all pairs. 2. **\( \cos A - \cos B \)** does **not** match \( \cos(A - B) \) except in a specific case (Pair (iii)). --- ### **1.2. General Conclusion** From the comparisons above, we can infer a **general trigonometric identity**: \[ \cos(A - B) = \cos A \cdot \cos B + \sin A \cdot \sin B \] This identity holds true **for any values of \( A \) and \( B \)**. The term \( \cos A - \cos B \), however, does not generally relate to \( \cos(A - B) \) in a consistent manner and does not represent a standard trigonometric identity. **Key Takeaways:** - The expression \( \cos(A - B) \) **always equals** \( \cos A \cdot \cos B + \sin A \cdot \sin B \) regardless of the angle measures. - The difference \( \cos A - \cos B \) does **not** equate to \( \cos(A - B) \) except in specific instances where the angles cause the terms to cancel out or align coincidentally. --- ### **Further Insights** Understanding these identities is crucial in simplifying complex trigonometric expressions and solving equations involving compound angles. Recognizing that **\( \cos(A - B) \)** aligns perfectly with the sum of the products of cosines and sines emphasizes the interconnectedness of trigonometric functions and their fundamental identities.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

When dealing with angles, it’s interesting to note that the cosine of a difference can be expressed in terms of the individual cosines and sines of those angles. This gives us a powerful tool for breaking down complex problems. Specifically, the formula \( \cos(A-B) = \cos A \cos B + \sin A \sin B \) neatly illustrates this relationship. By evaluating these expressions step by step, you can see how they interconnect and why they are essential in trigonometry! In practical scenarios, you might find these trigonometric identities popping up everywhere from architecture to engineering! For example, when designing a triangular structure, understanding angles and their relationships can help determine stress points and load distributions. Knowing how to calculate \( \cos(A-B) \) and compare it to \( \cos A - \cos B \) allows engineers to better predict behavior and ensure safety and stability in their designs. So, don’t just memorize these formulas—see them as keys to unlocking the mysteries of the physical world around you!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad