Responder
For any angles \( A \) and \( B \), the following trigonometric identity holds:
\[
\cos(A - B) = \cos A \cdot \cos B + \sin A \cdot \sin B
\]
This identity is consistent across different angle pairs and does not generally relate to \( \cos A - \cos B \).
Solución
Certainly! Let's tackle **Question I** systematically by evaluating each part step-by-step for the given angle pairs.
---
### **1.1. Evaluations for Given Angle Pairs**
We are provided with three pairs of angles:
1. **Pair (i):** \( A = 60^{\circ} \), \( B = 30^{\circ} \)
2. **Pair (ii):** \( A = 110^{\circ} \), \( B = 50^{\circ} \)
3. **Pair (iii):** \( A = 225^{\circ} \), \( B = 135^{\circ} \)
For each pair, we'll evaluate the following expressions:
- **(a)** \( \cos(A - B) \)
- **(b)** \( \cos A - \cos B \)
- **(c)** \( \cos A \cdot \cos B + \sin A \cdot \sin B \)
Let's proceed with the calculations using a calculator (ensure it's set to degree mode).
---
#### **Pair (i): \( A = 60^{\circ} \), \( B = 30^{\circ} \)**
1. **(a) \( \cos(A - B) \):**
\[
\cos(60^{\circ} - 30^{\circ}) = \cos(30^{\circ}) \approx 0.8660
\]
2. **(b) \( \cos A - \cos B \):**
\[
\cos(60^{\circ}) - \cos(30^{\circ}) = 0.5 - 0.8660 = -0.3660
\]
3. **(c) \( \cos A \cdot \cos B + \sin A \cdot \sin B \):**
\[
(0.5)(0.8660) + (\frac{\sqrt{3}}{2})(0.5) \approx 0.4330 + 0.4330 = 0.8660
\]
---
#### **Pair (ii): \( A = 110^{\circ} \), \( B = 50^{\circ} \)**
1. **(a) \( \cos(A - B) \):**
\[
\cos(110^{\circ} - 50^{\circ}) = \cos(60^{\circ}) \approx 0.5
\]
2. **(b) \( \cos A - \cos B \):**
\[
\cos(110^{\circ}) - \cos(50^{\circ}) \approx (-0.3420) - 0.6428 = -0.9848
\]
3. **(c) \( \cos A \cdot \cos B + \sin A \cdot \sin B \):**
\[
(-0.3420)(0.6428) + (0.9397)(0.7660) \approx -0.2196 + 0.7201 = 0.5005 \approx 0.5
\]
---
#### **Pair (iii): \( A = 225^{\circ} \), \( B = 135^{\circ} \)**
1. **(a) \( \cos(A - B) \):**
\[
\cos(225^{\circ} - 135^{\circ}) = \cos(90^{\circ}) = 0
\]
2. **(b) \( \cos A - \cos B \):**
\[
\cos(225^{\circ}) - \cos(135^{\circ}) \approx (-0.7071) - (-0.7071) = 0
\]
3. **(c) \( \cos A \cdot \cos B + \sin A \cdot \sin B \):**
\[
(-0.7071)(-0.7071) + (-0.7071)(0.7071) \approx 0.4999 - 0.4999 = 0
\]
---
### **Comparison of Values**
Let's tabulate the results for clarity:
| Pair | \( \cos(A - B) \) | \( \cos A - \cos B \) | \( \cos A \cdot \cos B + \sin A \cdot \sin B \) |
|------|--------------------|------------------------|-----------------------------------|
| (i) | 0.8660 | -0.3660 | 0.8660 |
| (ii) | 0.5000 | -0.9848 | 0.5005 ≈ 0.5000 |
| (iii)| 0 | 0 | 0 |
**Observations:**
1. **\( \cos(A - B) \)** and **\( \cos A \cdot \cos B + \sin A \cdot \sin B \)** yield **identical or nearly identical** results for all pairs.
2. **\( \cos A - \cos B \)** does **not** match \( \cos(A - B) \) except in a specific case (Pair (iii)).
---
### **1.2. General Conclusion**
From the comparisons above, we can infer a **general trigonometric identity**:
\[
\cos(A - B) = \cos A \cdot \cos B + \sin A \cdot \sin B
\]
This identity holds true **for any values of \( A \) and \( B \)**. The term \( \cos A - \cos B \), however, does not generally relate to \( \cos(A - B) \) in a consistent manner and does not represent a standard trigonometric identity.
**Key Takeaways:**
- The expression \( \cos(A - B) \) **always equals** \( \cos A \cdot \cos B + \sin A \cdot \sin B \) regardless of the angle measures.
- The difference \( \cos A - \cos B \) does **not** equate to \( \cos(A - B) \) except in specific instances where the angles cause the terms to cancel out or align coincidentally.
---
### **Further Insights**
Understanding these identities is crucial in simplifying complex trigonometric expressions and solving equations involving compound angles. Recognizing that **\( \cos(A - B) \)** aligns perfectly with the sum of the products of cosines and sines emphasizes the interconnectedness of trigonometric functions and their fundamental identities.
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución