Question
upstudy study bank question image url

Drag each tile to the correct box. Order the simplification steps of the expression below using the properties of rational \( \sqrt[3]{875 x^{5} y^{9}} \)

Ask by Burgess Flynn. in the United States
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Simplify the expression \( \sqrt[3]{875 x^{5} y^{9}} \) by factoring and applying cube root properties: 1. **Factor Inside the Cube Root:** - \( 875 = 125 \times 7 \) - \( x^5 = x^3 \times x^2 \) - \( y^9 = (y^3)^3 \) 2. **Apply Cube Root Properties:** \[ \sqrt[3]{125} \times \sqrt[3]{7} \times \sqrt[3]{x^3} \times \sqrt[3]{x^2} \times \sqrt[3]{y^9} \] 3. **Simplify Perfect Cubes:** - \( \sqrt[3]{125} = 5 \) - \( \sqrt[3]{x^3} = x \) - \( \sqrt[3]{y^9} = y^3 \) 4. **Combine Terms:** \[ 5 \times x \times y^3 \times \sqrt[3]{7 x^2} = 5x y^{3} \sqrt[3]{7 x^{2}} \] **Final Simplified Expression:** \[ 5x y^{3} \sqrt[3]{7 x^{2}} \]

Solution

To simplify the expression \( \sqrt[3]{875 x^{5} y^{9}} \) using the properties of rational numbers, follow these ordered steps: ### **Step 1: Factor Inside the Cube Root** Break down each component inside the cube root into factors that include perfect cubes. - **Factor 875:** \( 875 = 125 \times 7 \) (Since \(125 = 5^3\) is a perfect cube) - **Factor \(x^5\):** \( x^5 = x^3 \times x^2 \) (Here, \(x^3\) is a perfect cube) - **Factor \(y^9\):** \( y^9 = (y^3)^3 \) (Since \(y^3\) raised to the power of 3 is a perfect cube) The expression now looks like: \[ \sqrt[3]{125 \times 7 \times x^3 \times x^2 \times (y^3)^3} \] ### **Step 2: Apply the Property of Cube Roots** Use the property \( \sqrt[3]{a \times b \times c} = \sqrt[3]{a} \times \sqrt[3]{b} \times \sqrt[3]{c} \) to separate the factors. \[ \sqrt[3]{125} \times \sqrt[3]{7} \times \sqrt[3]{x^3} \times \sqrt[3]{x^2} \times \sqrt[3]{(y^3)^3} \] ### **Step 3: Simplify Each Cube Root** Evaluate the cube roots that are perfect cubes. - \( \sqrt[3]{125} = 5 \) - \( \sqrt[3]{x^3} = x \) - \( \sqrt[3]{(y^3)^3} = y^3 \) So, the expression simplifies to: \[ 5 \times \sqrt[3]{7} \times x \times \sqrt[3]{x^2} \times y^3 \] ### **Step 4: Combine Like Terms and Constants** Multiply the constants and like terms together to finalize the simplified expression. \[ 5x y^3 \sqrt[3]{7 x^2} \] ### **Final Simplified Expression** \[ 5x y^{3} \sqrt[3]{7 x^{2}} \] This is the simplified form of the original expression using the properties of rational numbers.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Beyond the Answer

To simplify the expression \( \sqrt[3]{875 x^{5} y^{9}} \), let's break it down step by step! First, recognize that \( 875 = 125 \times 7 = 5^3 \times 7 \). This allows us to separate the elements under the cube root: 1. Rewrite the expression: \( \sqrt[3]{875} \cdot \sqrt[3]{x^{5}} \cdot \sqrt[3]{y^{9}} \) 2. Apply the cube root to each part. You can simplify \( \sqrt[3]{875} \) to \( \sqrt[3]{125 \cdot 7} = \sqrt[3]{125} \sqrt[3]{7} = 5 \sqrt[3]{7} \). 3. For \( x^{5} \), split this into \( x^{3} \cdot x^{2} \), then \( \sqrt[3]{x^{5}} = x^{\frac{5}{3}} = x^{1} \sqrt[3]{x^{2}} \) which simplifies to \( x \sqrt[3]{x^2} \). 4. And for \( y^{9} \), notice \( \sqrt[3]{y^{9}} = y^{3} \) since 9 is a multiple of 3. Putting it all together, the final simplified expression becomes: \[ 5y^{3} x \sqrt[3]{7 \cdot x^{2}} \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy