Question
Solve the quadratic equation. \[ 7 x^{2}+3 x-1=0 \] Write one exact, simplified solution in each box. You can add or remove boxes. If a solution not a real number, write it in the form a + bi or a - bi, where a and b are real numbers. \begin{tabular}{|c}\( \square \frac{\square}{\square} \)\end{tabular}
Ask by Nunez Ball. in the United States
Feb 03,2025
Real Tutor Solution
Tutor-Verified Answer
Answer
The solutions are:
\[ x_{1} = -\frac{3 + \sqrt{37}}{14} \]
\[ x_{2} = \frac{-3 + \sqrt{37}}{14} \]
Solution
Solve the equation \( 7x^2+3x-1=0 \).
Solve the quadratic equation by following steps:
- step0: Solve using the quadratic formula:
\(7x^{2}+3x-1=0\)
- step1: Solve using the quadratic formula:
\(x=\frac{-3\pm \sqrt{3^{2}-4\times 7\left(-1\right)}}{2\times 7}\)
- step2: Simplify the expression:
\(x=\frac{-3\pm \sqrt{3^{2}-4\times 7\left(-1\right)}}{14}\)
- step3: Simplify the expression:
\(x=\frac{-3\pm \sqrt{37}}{14}\)
- step4: Separate into possible cases:
\(\begin{align}&x=\frac{-3+\sqrt{37}}{14}\\&x=\frac{-3-\sqrt{37}}{14}\end{align}\)
- step5: Rewrite the fraction:
\(\begin{align}&x=\frac{-3+\sqrt{37}}{14}\\&x=-\frac{3+\sqrt{37}}{14}\end{align}\)
- step6: Rewrite:
\(x_{1}=-\frac{3+\sqrt{37}}{14},x_{2}=\frac{-3+\sqrt{37}}{14}\)
The solutions to the quadratic equation \(7x^2 + 3x - 1 = 0\) are:
\[ x_{1} = -\frac{3 + \sqrt{37}}{14} \]
\[ x_{2} = \frac{-3 + \sqrt{37}}{14} \]
Therefore, the exact, simplified solutions are:
\[ x_{1} = -\frac{3 + \sqrt{37}}{14} \]
\[ x_{2} = \frac{-3 + \sqrt{37}}{14} \]
Reviewed and approved by the UpStudy tutoring team
Like
error msg
Explain
Simplify this solution
Beyond the Answer
To solve the quadratic equation \( 7x^{2}+3x-1=0 \) using the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \), we identify \( a = 7 \), \( b = 3 \), and \( c = -1 \). Calculating the discriminant: \[ b^2 - 4ac = 3^2 - 4(7)(-1) = 9 + 28 = 37 \] Now applying the formula: \[ x = \frac{-3 \pm \sqrt{37}}{2 \times 7} = \frac{-3 \pm \sqrt{37}}{14} \] Thus, the two exact, simplified solutions are: \[ \begin{tabular}{|c}\(\square \frac{-3 + \sqrt{37}}{14}\)\\ \(\square \frac{-3 - \sqrt{37}}{14}\)\end{tabular} \]