Question
upstudy study bank question image url

Topic: Ratios the angles of triangles are in a ratios \( 1: 3: 8 \). What are the angles.

Ask by Wyatt Joseph. in South Africa
Feb 03,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The angles of the triangle are \(15^\circ\), \(45^\circ\), and \(120^\circ\).

Solution

To determine the measures of the angles in a triangle where the angles are in the ratio \(1 : 3 : 8\), follow these steps: 1. **Understand the Ratio:** Let the angles be represented as: \[ \text{Angle}_1 = x \] \[ \text{Angle}_2 = 3x \] \[ \text{Angle}_3 = 8x \] 2. **Use the Triangle Angle Sum Property:** The sum of the interior angles of any triangle is always \(180^\circ\). Therefore: \[ x + 3x + 8x = 180^\circ \] 3. **Combine Like Terms:** \[ 12x = 180^\circ \] 4. **Solve for \(x\):** \[ x = \frac{180^\circ}{12} = 15^\circ \] 5. **Find Each Angle:** Now that \(x = 15^\circ\), substitute back to find each angle: \[ \text{Angle}_1 = x = 15^\circ \] \[ \text{Angle}_2 = 3x = 3 \times 15^\circ = 45^\circ \] \[ \text{Angle}_3 = 8x = 8 \times 15^\circ = 120^\circ \] 6. **Conclusion:** The measures of the angles in the triangle are: \[ 15^\circ,\ 45^\circ,\ \text{and}\ 120^\circ \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Mind Expander

To find the angles of the triangle, start by knowing that the sum of the angles in a triangle is 180 degrees. Since the angles are in the ratio \(1:3:8\), you can represent the angles as \(x\), \(3x\), and \(8x\). Set up the equation: \(x + 3x + 8x = 180\). This simplifies to \(12x = 180\), giving \(x = 15\). Therefore, the angles are \(15^\circ\), \(45^\circ\), and \(120^\circ\). Ratios aren't just for geometrical figures; they pop up in everyday life too! Think about cooking, where you need to mix ingredients in specific proportions, like a recipe calling for 2 cups of flour to 1 cup of sugar. Understanding ratios can help you double or halve recipes effortlessly, ensuring delicious results no matter the quantity!

Related Questions

Exercice 82 Le plan est rapporté à un repère orthonormal direct \( (0, \vec{u}, \vec{v}) \). On appelle \( f \) l'application qui, à tout point \( M \) d'affixe \( z(z \neq-1) \) associe le point \( M^{\prime} \) d'affixe \( z^{\prime} \) telle que : \( z^{\prime}=\frac{-i z-2}{z+1} \). Soient A, B et C les points d'affixes respectives \( a=-1, b=2 i \) et \( c=-i \). 1) Soit \( C^{\prime} \) l'image du point \( C \) par \( f \). Donner l'affixe \( c^{\prime} \) du point \( C^{\prime} \) sous forme algébrique, puis sous forme trigonométrique. 2) Calcule l'affixe \( d \) du point \( D \) ayant pour image par \( f \) le point \( D^{\prime} \) d'affixe \( d^{\prime}=\frac{1}{2} \). 3) Pour tout nombre complexe \( z \) différent de -1 , on note \( p \) le module de \( z+1 \) (c'est-à-dire \( |z+1|=p) \) et \( p^{\prime} \) le module de \( z^{\prime}+i\left(\right. \) c'est-à-dire \( \left.\left|z^{\prime}+i\right|=p^{\prime}\right) \). a) Démontre que pour tout nombre complexe \( z \) différent de -1 , on a : \( p p^{\prime}=\sqrt{5} \). b) Si le point \( M \) appartient au cercle \( (\Gamma) \) de centre A et de rayon 2 , montre qu'alors \( M^{\prime}=f(M) \) appartient à un cercle ( \( \left.\Gamma^{\prime}\right) \) dont on précisera le centre et le rayon. 4) Pour tout nombre complexe \( z \) différent de -1 , on considère le nombre complexe \( \omega=\frac{z-2 t}{z+1} \). a) Interprète géométriquement l'argument du nombre complexe \( \omega \). b) Montre que \( z^{\prime}=-i \omega \). c) Détermine l'ensemble \( (F) \) des points \( M \) d'affixe \( z \) telle que \( z^{\prime} \) soit un réel non nul. d) Vérifie que le point \( D \) appartient aux ensembles \( (\Gamma) \) et \( (F) \). 5) Représente les ensembles \( (\Gamma) \), (F) et \( \left(\Gamma^{\prime}\right) \) en prenant 4 cm pour unité graphique.
Geometry Mali Feb 03, 2025
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy